
Pairing-free secure-channel establishment in mobile networks
with fine-grained lawful interception

Anonymous Author(s)

ABSTRACT

Modern-day mobile communications allow users to connect from

any place, at any time. Yet, the price of such easily-accessible com-

munication is a lack of privacy. Current operators providing mobile

service to users learn not only call- and SMS-metadata, but also the

actual content of those exchanges; one of the reasons behind this

is the Lawful-Interception requirement, demanding that serving

networks be able to provide this data to authorities, upon receiving

a warrant.

At ESORICS 2021, Arfaoui et al. pioneered a primitive called

Lawful-Interception Key-Exchange, which seems to achieve the

best of both worlds: (provably) privacy-enhanced communications,

and a possibility of having a fine-grained, limited access to the

user’s data, if necessary. However Arfaoui et al.’s concept had

two important shortcomings. First, it required the use of pairings

which, while sufficiently efficient, might not always be available in

the mobile setting. More importantly, Arfaoui et al.’s scheme was

only usable in a domestic setting, where the two communicating

users (Alice and Bob) were subject to the same Lawful-Interception

authorities. The case for roaming was left as an open question.

In this paper we answer that open question, extending the frame-

work of Arfaoui et al. to allow Alice and Bob, potentially in two

different countries (and thus in the presence of two different sets of

authorities), to establish a secure channel that provably guarantees

the same, strong properties as the scheme presented at ESORICS

2021. Our construction is moreover pairing-free, and its security

relies on standard assumptions. Our implementation results show

that our scheme can be more than ten times faster than that of

Arfaoui et al. for the most expensive operations (and twice faster

for the least expensive ones). The performance gap only grows,

moreover, as the number of authorities becomes larger.

CCS CONCEPTS

• Security and privacy→ Public key (asymmetric) techniques;

Security protocols.

KEYWORDS

Lawful interception, roaming, mobile networks, 5G

ACM Reference Format:

Anonymous Author(s). 2021. Pairing-free secure-channel establishment

in mobile networks with fine-grained lawful interception. In Proceedings

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

of ACM Conference (Conference’17). ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

End-to-end secure communication is one of cryptography’s most

fundamental and researched topics. In short, secure-channel estab-

lishment allows peers Alice and Bob to exchange messages over an

open line, such that: no one but themselves can learn anything about

the contents of those messages (confidentiality); they can verify

the authorship of those messages (authenticity); even if their long-

term secrets leak, past communications remain confidential and

authentic (perfect forward secrecy – PFS). In the wake of Edward

Snowden’s revelations of mass surveillance on civilian conversa-

tions, these properties are particularly important.

People’s awareness of and desire for the privacy of their commu-

nications (which has led, e.g., to the adoption of applications de-

signed to protect privacy, like WhatsApp or Viber) is now stronger

than ever. This desire was partially acknowledged and legislated

through commendable regulations, such as the General Data Pro-

tection Regulation (GDPR
1
or the new electronic privacy regulation

(ePR
2
) in the European Union. These regulations have revolution-

ized the way Web-browsing is done today, by regulating access to

the personal data websites can collect about their clients and giving

users the right to remove information which may harm them.

Yet, at the opposite end, law-enforcement agencies and govern-

ments have, for years, been pushing for less privacy in communica-

tions. This is often done in the name of national and international

security, and we are told it is to prevent horrific crimes, such as

child abuse, terrorism, or organ trafficking. Consequently, while

law-enforcement agencies advocate for privacy in communications,

they also want “back doors": ways to exceptionally access data in

order to prevent crime.

A recent, iconic case is that of FBI versus Apple
3
, in which the

FBI demanded a back door into Apple phones, allowing them access

to locked devices. Apple refused this, explaining that such back

doors are unconstitutional, and that such unrestrained access would

set a dangerous precedent.

Yet, even the staunchest defenders of privacy, such as Abelson et
al. [1] agree that limited and well-regulated exceptional access to

data may be useful and acceptable (for instance, in order to prevent

the heinous crimes cited above). This is not the case for univer-

sal back doors, which do not discriminate between subpoenaed

and un-subpoenaed sensitive information. However, fine-grained,

exceptional access to data can be viewed as constructive.

The notion of key-escrow is generic, capturing just such a fine-

grained back door, targeting a key (or a set of keys). In spite of

extensive research, key-escrow knows many impossibilities and

1
See https://gdpr-info.eu/ for the full text.

2
See https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52017PC0010.

3
See https://epic.org/amicus/crypto/apple for a summary of that debate.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://gdpr-info.eu/
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52017PC0010
https://epic.org/amicus/crypto/apple

Conference’17, July 2017, Washington, DC, USA Anon.

setbacks – due mostly to its wide-ranging application scenarios.

For instance, it is usually hard to ensure that Alice and Bob use a

particular channel for which they have escrowed keys; moreover,

many key-escrow protocols require parties that recover keys (the

authorities) to be always online.

At ESORICS 2021 Arfaoui et al. introduced Lawful Interception

Key-Exchange protocols (LIKE) as a way to provide punctual ex-

ceptional access to mobile conversations between users, while pre-

serving the privacy of all users and conversations not targeted by a

subpoena [2]. This scenario, which naturally obliges Alice and Bob

to converse over a specific channel via their respective operators,

also comes with enforced security properties (non-frameability and

honest operator) and does not require the authorities to be online.

Although the LIKE protocol of [2] works for multiple operators

(if Alice and Bob subscribe to two different service providers for

instance), it does not scale well to multiple sets of authorities. In

other words, exceptional access cannot work in Alice’s country

independently of Bob’s country. This is problematic, since interna-

tional cooperation might be complicated if not impossible in this

case (e.g., due to divergent laws or lack of mutual agreements).

The protocol presented in [2] achieves its security properties by

using pairings, which require specialized libraries for the imple-

mentation, some of which might not always be readily available.

In this paper, we extend the LIKE scenario to a more realistic

setup, which allows to capture both the domestic and roaming sce-

narios. We describe a protocol that is efficient, pairing-free, and

which allows opening with respect to two independent set of au-

thorities, one on Alice’s side, and one on Bob’s side. Our scheme

is thus more efficient, while retaining the strong guarantees with

respect to non-frameable, fine-grained lawful interception that [2]

pioneered.

The LIKE setup. Lawful interception (LI) features prominently in

3GPP standards, being the process by which exceptional access can

be granted to a specific set of authorities, in possession of a warrant,

to mobile data or metadata pertaining to a user.
In current mobile architectures, if two users Alice and Bob decide

to communicate by using mobile networks, the data that they share

is forwarded by the operators serving Alice and Bob respectively.

During LI, the accepted set of authorities query the operators for

the data or metadata specified in the warrant. Unfortunately, this

gives operators access to enormous amounts of potentially-sensitive

data. Not only is this damaging to user privacy, but it also makes

operators a target to any entity wanting to gain access to that data.

Arfaoui et al. present in [2] a pairing-based alternative to this

approach, in which Alice and Bob establish an end-to-end-secure

channel between them, which protects the confidentiality of mes-

sages even from the operators serving Alice and Bob. Exceptional

Lawful Interception access is guaranteed by the bilinearity prop-

erty, since Alice and Bob “embed" the product of an arbitrary (but

fixed per each session) number of authority keys into the session

key. During LI, each of the featured authorities generate a trapdoor

to the session key; by then using bilinearity and the set of all the

trapdoors, the authorities recover the key.

An obvious downside of the protocol is that both Alice and

Bob must embed the same set of authorities into the session key;

otherwise, the two keys would not match. In [2], the authors leave

Lawful Interception in the presence of two sets of authorities as an

open question.

Our protocol. We consider a LIKE setup in which Alice, currently

in country A, is receiving mobile service from operator OA. Bob

is in country B, receiving mobile service from another operator

OB. When Alice and Bob communicate over the mobile network,

the two operators forward all the data; however, we would ideally

like Alice’s and Bob’s communication to remain secure even with

respect to these two operators.

Unlike [2], we consider that Alice’s communication will be sub-

ject to a set of authorities in country A, while Bob’s may be opened

by a different set of authorities, in country B. In addition, since

Lawful Interception can be implemented in many ways, countries

A and B could require additional flexibility, such as:

• The number of authorities in the two different countries, A

and B, could be different;

• While all authorities must contribute in order to achieve

exceptional opening, the channel key output in that opening

may only be divulged to some authorities;
• The operator is a priori not one of the opening authorities.
Yet, under special circumstances, the operator might play a

double part: a proxy in communication, but also an authority;

• Protocol participants in country A should not have to factor

in the judicial system in country B (i.e., authorities in country
A and OA need not be aware of the identities of authorities

in country B);

• If LI is triggered in Country A, none of the parties in Country

B need be aware of it.

In our protocol, users Alice and Bob (essentially) use signed

Diffie-Hellman to establish a secure channel, by communicating

via the two serving operators. The authority keys are no longer

embedded in the session key; instead, in order to allow exceptional

opening, the two endpoints each encrypt the session key with a

function of the authority keys (akin to ElGamal encryption), pro-

viding the ciphertext and a proof of its well-formedness to the

operators. Importantly, the ciphertext and proof are only received

and verified by the operator providing service to that particular

endpoint. Our protocol’s security relies on standard assumptions,

like the hardness of the Decisional Diffie-Hellman problem, the

unforgeability of the signature scheme, and the security of simple

proofs and signatures of knowledge.

We showcase the advantages of our protocol by a proof-of-

concept implementation, the results of which are summarized in

Section 5. We show that in a pairing-friendly setting (curve MNT159,
which optimizes performance for our competitor, Arfaoui et al.),
our protocol is still much faster. The gap in performance increases

dramatically with the number of pairings required by Arfaoui et
al. at each operation. Our key-extraction step is more than twice

as fast for our protocol ([2] required a single pairing), whereas on

MNT159 our scheme’s key-exchange is 8 times faster ([2] required 8

pairings).

The performance gap widens even more in a group that is not as

pairing-friendly (thus harder to use by Arfaoui et al.), namely the

prime192v setting. The performance gap is even greater (in our

favour) for algorithms which have a runtime linear in the number of

authorities. As we show in Section 5, the linear slope for increasing

Pairing-free secure-channel establishment in mobile networks with fine-grained lawful interception Conference’17, July 2017, Washington, DC, USA

number of authorities is much steeper than ours in the protocol of

Arfaoui et al.. Moreover, for our protocol, the prime192v setting

seems to scale much better.

Other related work.Our work is most closely related to that of Ar-

faoui et al. [2]; however, as discussed above, this paper extends LIKE
to handle two different sets of operators for the same handshake

(a question left open by [2]). In addition, unlike the pairing-based

construction of [2], we used standard primitives, which also reflects

in the protocol runtime as shown by our implementation.

We also provide stronger guarantees than typical key-escrow

protocols, such as [3, 5, 9–12, 14–22]. For one thing, our chosen

use-case (mobile communications) obliges participants to commu-

nicate by means of two proxying serving networks, allowing those

operators to vouchsafe for Alice’s and Bob’s compliance to the pro-

tocol. In addition, our protocol can handle two independent sets

of authorities for the same key, simultaneously, one performing

LI on Alice’s end, and the other, on Bob’s. Finally we inherit some

of the same properties as the LIKE scheme of Arfaoui et al.: we
fine-grain access to a single session at a time; we have no central

key-generation authority; we require no trust in authorities; and

finally, we do not require those authorities to be online except at

the moment of lawful interception opening.

A parallel line of research to ours [6, 23] aims to make LI possible,

but computationally very expensive. Unfortunately, that approach

contravenes 3GPP requirements towards lawful interception, which

include a requirement of timely return of the subpoenaed content.

We also note that this timeliness requirement is made of the opera-

tor: in other words, it is an incentive for operators to only adopt

solutions which allow for speedy recovery of session keys.

2 PRELIMINARIES

2.1 Notations

Let 𝜆 ∈ N be a security parameter. We denote by 𝑥 ← 𝑦 the fact that

the variable 𝑥 is assigned the value 𝑦. We write 𝑥
$←− 𝐴 to indicate

that 𝑥 is sampled identically and uniformly at random from the set

𝐴, and, for an algorithm Alg, the notation 𝑦 ← Alg(𝑥) expresses
the fact that, if run on input 𝑥 , Alg outputs 𝑦.

Many of our algorithms are probabilistic polynomial time in the

(implicit) security parameter 𝜆, a fact we denote by “PPT".

Our LIKE construction in Section 4 will require the use of digital

signatures, and proofs and signatures of knowledge. Its security

relies mainly on the hardness of the Decisional Diffie-Hellman

problem (DDH). We review the DDH assumption and our building

blocks in this section.

2.2 Assumptions and building blocks

Definition 2.1 (Decisional Diffie-Hellman problem). Let (G, 𝑝, 𝑔)
be a prime order group. Then the decisional Diffie-Hellman problem
is hard if, for all PPT adversaries A, AdvDDHA (𝜆) is negligible in 𝜆:

AdvDDHA (𝜆) =
�����Pr

[
(𝑥,𝑦) $←− (Z∗𝑝)2;

𝑏 ← A(𝑔𝑥 , 𝑔𝑦, 𝑔𝑥 ·𝑦)
: 𝑏 = 1

]
− Pr

[
(𝑥,𝑦, 𝑧) $←− (Z∗𝑝)3;
𝑏 ← A(𝑔𝑥 , 𝑔𝑦, 𝑔𝑧);

: 𝑏 = 1

] ����� .

We denote by AdvDDH (𝜆) the maximum advantage a PPT adver-

sary can have to solve this problem (note that if DDH is hard, then

AdvDDH (𝜆) will be negligible as a function of the security parame-

ter).

Definition 2.2 (Digital signatures). A digital signature scheme

DS is a triplet of algorithms (SGen, SSig, SVer). The randomized

key-generation SGen takes in input 1
𝜆
and outputs a public/secret

key pair (PK, SK). On input SK and a message𝑚, the randomized

signing algorithm SSig outputs a signature 𝜎 . The deterministic

verification algorithm SVer takes as input the public key PK, the
message 𝑚, and the signature 𝜎 , outputting 1 if the signature is

deemed valid, and 0 otherwise. For all (SK, PK) ← SGen and𝑚, we

assume that 1← SVer(PK,𝑚, SSig(SK,𝑚)) (the signature scheme

has perfect correctness).

Let DS = (SGen, SSig, SVer) be a digital signature scheme. Let

Sig be an oracle which, given in input the message𝑚, internally

runs SSig(SK,𝑚) to output a valid signature for𝑚. The Existential

Unforgeability against Chosen Message Attacks property is defined

by means of the following experiment, whereA is a PPT adversary

with access to Sig:
ExpEUF-CMA

DS (A):
(PK, SK) ← SGen(1𝜆)
(𝑚,𝜎) ← ASig(·) (PK)
Return 1 if (𝑚,𝜎) not output by Sig(·) and SVer(PK,𝑚, 𝜎) = 1,

0 otherwise.

Definition 2.3 (EUF-CMA). A digital signature DS is existentially
unforgeable against chosen message attacks if, for all PPT adversaries,

AdvEUF-CMA
DS,A (𝜆) is negligible in 𝜆,

AdvEUF-CMA
DS,A (𝜆) = Pr

[
ExpEUF-CMA

DS,A (𝜆) = 1

]
.

We denote by AdvEUF-CMA
DS (𝜆) the maximum advantage obtainable

by a PPT adversary A.

Signatures of Knowledge. For our construction we require two

somewhat-similar primitives: non-interactive zero-knowledge proofs

of knowledge [4], and signatures of knowledge [8]. The former of

these allows a prover to convince a verifier that it knows a witness
to a particular statement, without revealing information about that

witness. Signatures of knowledge allow a signer to bind knowledge

of a witness to a statement, and a message, proving that the posses-

sor of a valid witness to a specific statement has signed a particular

message𝑚. We use the Camenisch/Stadler notation [7] to formalize

both these primitives below.

We consider a setup in which R is a binary relation, and L
is a language such that 𝑠 ∈ L ⇔ (∃𝑤, (𝑠,𝑤) ∈ R). We call 𝑠

a statement, while 𝑤 is called a witness. A Non-Interactive Proof
of Knowledge (NIPoK) allows a prover to convince a verifier (in

possession of 𝑠) that it knows a witness 𝑤 such that (𝑠,𝑤) ∈ R.
In addition, a Zero-Knowledge (ZK) proof of knowledge allows

no additional information about the witness to leak. We denote by

NIPoK {𝑤 : (𝑤, 𝑠) ∈ R} a proof of knowledge of𝑤 for the statement

𝑠 , given the relation R.
In signatures of knowledge, signers use their witnesses 𝑤 as

private keys, while statements 𝑠 become public keys. When signing,

the user proves its knowledge of𝑤 , using the message𝑚 as a label

Conference’17, July 2017, Washington, DC, USA Anon.

to sign it. Signatures of knowledge are verifiable by any party in

possession of the statement 𝑠 . Such a signature is strongly unforge-

able because the signer requires the perfect knowledge of the secret

key𝑤 .

Definition 2.4 (Signature of Knowledge). LetR be a binary relation

and L be a language such that 𝑠 ∈ L ⇔ (∃𝑤, (𝑠,𝑤) ∈ R). A
Signature of Knowledge for L is a pair of algorithms (SoK, SoKver)
such that:

SoK𝑚 {𝑤 : (𝑠,𝑤) ∈ R}: outputs a signature 𝜋 .
SoKver(𝑚, 𝑠, 𝜋): outputs a bit 𝑏.

A signature of knowledge has the following properties:

• Completeness: For any statement/witness pair (𝑠,𝑤) ∈ R
and message𝑚, SoKver(𝑚, 𝑠, SoK𝑚 {𝑤 : (𝑠,𝑤) ∈ R}) = 1.

• Perfect Zero Knowledge: There exists a polynomial-time al-

gorithm Sim called the simulator, such that Sim(𝑚, 𝑠) and
SoK𝑚 {𝑤 : (𝑠,𝑤) ∈ R} follow the same probability distribu-

tion.

• Knowledge Extractor: There exists a polynomial-time know-

ledge extractor Ext and a negligible function 𝜖SoK such that,

for any algorithm ASim(·,·) (𝜆) that outputs a fresh state-

ment/ signature/message tuple (𝑠, 𝜋,𝑚)with SoKver(𝑚, 𝑠, 𝜋) =
1, such thatA has access to a simulator that forges signatures

for chosen statement/message pairs, the extractor ExtA (𝜆)
outputs𝑤 such that (𝑠,𝑤) ∈ R having access to A(𝜆) with
probability at least 1 − 𝜖SoK (𝜆).

The definition of non-interactive zero-knowledge proofs of knowl-

edge follows along similar lines – except NIPoKs do not require/use

messages.

3 LIKE PROTOCOLS

Originally described by Arfaoui et al. [2], LIKE protocols are princi-

pally meant to allow two users Alice (denoted A) and Bob (denoted

B), whose mobile communication is forwarded by operatorsOA (pro-

viding mobile service to A) and OB (serving B), to establish a secure

channel that can be exceptionally opened by some authorities.
In the original setting of [2], at each connection Alice, Bob, and

the operators must agree on the same subset of authorities. While

this might be realistic for domestic mobile communications, it is not

so for the case of roaming, in which Alice and her serving network

are in a different country (thus affiliated to different authorities)

than Bob and his serving network. In this work we extend the work

of Arfaoui et al. to also cover roaming – an extension which will

require small modifications to the primitive’s syntax and security

model.

Context and parties. Like [2], we consider a set of user USERS,
a set of operators OPS, and a set of authorities AUTH (the latter

will include the set of all possible authorities, from all possible

countries). Anticipating our setup, note that each protocol session

will take place in the presence of two subsets of authorities, which

might, or might not, have a non-void intersection.

The unionUSERS∩OPS∩AUTH is the set of parties. It is assumed

that the user set is disjoint from the union of the other two sets:

in other words, a user can never be an authority or an operator.

Just like Arfaoui et al., we also assume that technically the operator

and authority sets are disjoint. However, note that in reality, an

operator can in fact also play a part in exceptional opening – in

that case, we “split" the same moral identity into two separate ones

which have knowledge of each other’s keys: one entity plays the

role of the operator, and the other, the role of the authority.

Protocol structure and intuition. Like [2] we envision LIKE pro-

tocols as a sequence of steps: setup, key-generation, authenticated

key-exchange, verification, and lawful interception (the latter step

being made up of two algorithms). During setup, we generate some

common public parameters (such as the description of a prime-order

group). Then, each type of party (users, operators, and authorities)

will use its own key-generation algorithm to generate credentials.

These first two steps are depicted in Figure 1, and while we recall

their syntax below, it is unchanged compared to [2].

Once parameters are generated, two users and their respective

serving networks engage in an authenticated key-exchange pro-

tocol (as depicted in Figure 2), requiring Alice and her serving

operator to agree on one subset of authorities, while Bob and his

operator must agree on a (possibly distinct) set of authorities. This is

reflected in a slight modification of the syntax of our authenticated

key-exchange algorithm below.

During authenticated key-exchange, the two endpoints compute

a session key, while the operators verify the fact that the transcript

is protocol compliant, and finally each output a session state. The

syntax of [2] is permissive, allowing the two session states, corre-

sponding to the two operator outputs in a single session, to differ.

In the case of roaming (for two different sets of authorities), those

states will always differ, since they include the authority public-key

sets.

Each session state is publicly verifiable with respect to the va-

lidity of the transcript and the identities of both the participants

that generated it, and the authorities that were considered. Once

more, the syntax of [2] can remain unchanged, although in practice

we must verify the session state output by OA with respect to the

authority set considered by A and her operator, while the session

state output by OB is verified with respect to the authority set

considered by B and his operator.

The final step is lawful interception, which consists of two algo-

rithms. Using the session state output by one of the operators, the

authorities with respect to which that session state was established

will first generate some trapdoors. Using all the trapdoors in input,

the opening algorithm will then yield the session key established

by Alice and Bob (as depicted in Figure 3).

Notations. In both the formalization below and the model, we use

dot notations to separate specific attributes of a party from the

party owning it. For instance A.PK denotes Alice’s public key, and

Λ𝑖 .SK is the secret key of the 𝑖-th authority. The two operators

are denoted OA and OB because they provide service to Alice and

Bob respectively
4
. Parties A and OA agree to run the protocol in

the presence of a subset of 𝑛A authorities, while parties B and O
agree to run it in the presence of a possibly different subset of 𝑛B
authorities. We note that the choice of authorities is thus limited to

one of the two sides of the protocol.

4
Note that this does not necessarily mean that Alice and Bob subscribe to those two

particular operators.

Pairing-free secure-channel establishment in mobile networks with fine-grained lawful interception Conference’17, July 2017, Washington, DC, USA

Figure 1: The Setup and Key-Generation steps, for two users, two operators, and three authorities

Figure 2: Authenticated key-exchange. The two left parties agree on a subset of authorities (3 in this example), while the two

right parties agree on a different set of two authorities. The operators compute a session state, while the parties compute a

session key.

Extending the LIKE definition. The only extension we make to

the already-existing LIKE syntax of [2] is to provide for two sets

of authorities in the AKE protocol. The new formal syntax of this

algorithm is as follows:

• AKE⟨A(A.SK),OA (OA .SK),OB (OB .SK),B(B.SK)⟩(PKA→B) →
(kA, sstA, sstB, kB): An authenticated key-exchange protocol

between users (A,B) ∈ USERS2 and operators (OA,OB) ∈
OPS2. The parties each take as input a secret key, and have

access to the same set of public values PKA→B contain-

ing: parameters pp, public keys (A.PK,B.PK), and two dis-

tinct vectors of authority public keys (APKA,APKB) =
((ΛA

𝑖
.PK)𝑛

𝑖=1
, (ΛB

𝑖
.PK)𝑚

𝑖=1
) with ΛA

𝑖
∈ AUTH for all 𝑖 ∈ J1, 𝑛K

and ΛB
𝑖
∈ AUTH for all 𝑖 ∈ J1,𝑚K. Note that we place no

restrictions on whether or not the same public key exists in

both vectors. We also note that, while the syntax seems to

require Alice to know the keys of the authorities on Bob’s

side, this is not really necessary for our protocol (Alice will

never need those). In that sense, the use of a universal set

PKA→B is only for convenience and legibility. At the end

of the protocol, A (resp. B) returns a session secret key kA
(resp. kB) and the operator OA (resp. OB) returns a (public)

session state sstA (resp. sstB). In case of failure, the parties

output a special symbol ⊥ instead.

We make no modification to the remaining algorithms in the

original framework of Arfaoui et al. [2]. However, for completeness,

we recall them here.

• Setup(1𝜆) → pp: Generates public system parameters pp.
• UKeyGen(pp) → (U.PK,U.SK): Used by mobile users to

generate a public/private user key pair.
• OKeyGen(pp) → (O.PK,O.SK): Used by operators to gen-

erate a public/private operator key pair.

• AKeyGen(pp) → (Λ .PK,Λ .SK): Used by authorities (irre-

spective of country) to generate a public/private authority
key pair. Note that, although we place no restrictions on the

subsets of authorities used, they must use the same public

system parameters (at least, the same per AKE session), re-

gardless of their country in order to allow the protocol to

work.

• Verify(pp, sst,A.PK,B.PK,O.PK,APK) → b: Verifies if an
input session state sst, is consistent with a session having

been correctly run and authenticated by input operator O
between users A and B for a set of authorities APK. If the
verification succeeds the algorithm outputs 1.

• TDGen(pp,Λ .SK, sst) → Λ .td: Generates a trapdoor Λ .td
for a session state sst, using authority secret key Λ .SK.
• Open(pp, sst,APK,T) → k: Recovers a purported key for

session with state sst, given authority public keys APK =

(Λ𝑖 .PK)𝑛𝑖=1 and trapdoors T = (Λ𝑖 .td)𝑛𝑖=1. If no key can be

recovered, the output is ⊥.

4 OUR PROTOCOL

For our scheme, we assume that both the operators and the users em-

ploy a digital signature scheme DS = (SGen, SSig, SVer) – namely,

their long-term credentials will be used for signing messages. We

will require two types of zero-knowledge proofs of knowledge:

• DLog: The first type of ZK NIPoK we require is a proof of

knowledge of a discrete logarithm. We use this to prove that

the authorities generated their long-term keys correctly; this

is crucial in order to guarantee that exceptional opening

occurs only when all the authorities in the session state’s au-

thority vector cooperate. We thus actively fine-grain lawful

interception and prevent easy mass surveillance.

Conference’17, July 2017, Washington, DC, USA Anon.

Figure 3: Lawful interception on Alice’s side of the conversation. Note that, to recover the key, all the authorities stipulated

during key-exchange must generate and use their trapdoors.

• Equal exponent: The second type of ZK NIPoK we need is

a proof of equality of discrete logarithms. We use this in the

trapdoor-generation algorithm, for which authorities need

to prove that their trapdoors were generated using the same

exponent as was used in their long-term credentials. This

prevents malicious authority behaviour which might yield a

different session key when opening than the key computed

by Alice and Bob.

The signature of knowledge will also prove a knowledge of

equal exponents, which assures the operator that Alice’s and Bob’s

messages will allow the authorities to recover the key yielded by

that protocol session. Note that in our protocol Alice’s operator will

check protocol compliance with respect to the set of authorities

in Alice’s country, and Bob’s operator will check compliance with

respect to the authorities in Bob’s country.

In the following, we detail our protocol in terms of the syntax

presented in the previous section.

Setup and Key Generation.As opposed to the protocol of Arfaoui

et al. [2], we do not require pairings. During setup we just fix the

description of a group G of prime order 𝑝 with some generator 𝑔.

Both users and operators use the key-generation algorithm of the

signature scheme in order to generate their credentials, whereas

authorities generate an exponent in Z∗𝑝 as their secret key, publish

the public key corresponding to that exponent, and prove in zero-

knowledge that the keys are well-formed.

• Setup(1𝜆): Based on 𝜆, choose G a group of prime order 𝑝 ,

a generator of 𝑔 of G, and output pp = (𝜆,G, 𝑝, 𝑔).
• UKeyGen(pp): Run (U.PK,U.SK) ← SGen(1𝜆) and return

(U.PK,U.SK).
• OKeyGen(pp): Run (O.PK,O.SK) ← SGen(1𝜆) and return

(O.PK,O.SK).
• AKeyGen(pp): Pick Λ .SK

$←− Z∗𝑝 , compute Λ .pk ← 𝑔Λ .SK

and Λ .ni ← NIPoK
{
Λ .SK : Λ .pk = 𝑔Λ .SK}

, set Λ .PK ←
(Λ .pk, Λ .ni). Return (Λ .PK,Λ .SK).

Authenticated key-exchange. The protocol AKE is instantiated

as described in Figure 4.

This protocol presents a crucial difference in the key-computation

compared to [2]. Beyond being pairing-free, our scheme no longer

embeds the authorities into the session key, thus allowing two

distinct sets of authorities to open it.

As described in Figure 4, we require everyone to be sure, when

using a particular authority public key, that it was generated ac-

cording to protocol. This is why we have a precomputation phase

in which the users and operators check the public keys of the

authorities they are about to use. However, we note that this pre-

computation phase can be reused across sessions: once verified, a

public key need never be verified again.

During the same precomputation phase, A and OA multiply the

public keys of the involved authorities, thus obtaining an auxiliary

value ℎA (and respectively ℎB).

Our protocol relies on signed Diffie-Hellman, with the key being

𝑋 𝑦 = 𝑌𝑥 = 𝑔𝑥𝑦 , within the groupG. However, we also embed some

elements into the protocol, which will later enable authorities on

both sides to recover trapdoors to the AKE session. These additional

elements are only exchanged between the user and its serving

network; once they are verified, they are added by the operator to

the session state, but not forwarded to the other operator. This is

why the transcript of the protocol between OA and OB is that of

the signed Diffie-Hellman protocol, while the one between A and

OA (and B and OB respectively) contains additional elements.

In order to allow the authorities in APKA to recover the key, user

A “encrypts" the session key (𝑌𝑥
) with ℎ𝑥A, obtaining a ciphertext

𝐻A. Looking ahead, in order to “neutralize" ℎA and recover the key

we require the contributions of all the parties whose public keys

are in ℎA. Bob will do the same on his side, but for the authorities

in APKB and respectively for ℎB; the ciphertext obtained is 𝐻B.

Note that successful session opening depends on thewell-formed-

ness of the ciphertexts 𝐻A and 𝐻B. In order to prevent the users

from cheating, we require them to provide a signature of knowledge

on a message consisting of the identities of Alice, Bob, and the

authorities, proving in zero-knowledge that they have used the

same exponent in computing their 𝐻 value and for their Diffie-

Hellman key-share.

Notice that at no point in the execution of the protocol does

Alice need to know the identities or public keys of Bob’s authorities,

nor vice-versa. This is a crucial feature of the protocol, which is

essential in real life, since often the authorities in one country do

Pairing-free secure-channel establishment in mobile networks with fine-grained lawful interception Conference’17, July 2017, Washington, DC, USA

Alice: A(A.SK) Alice’s operator: OA (OA .SK) Bob’s operator: OB (OB .SK) Bob: B(B.SK)
Precomputation phase (reusable across some sessions)

precomputation of A and OA : parse APKA as (ΛA
𝑖
.pk,ΛA

𝑖
.ni)𝑛

𝑖=1
; precomputation of B and OB : parse APKB as (ΛB

𝑖
.pk,ΛB

𝑖
.ni)𝑚

𝑖=1
;

check all ΛA
𝑖
.ni;𝜔A ← A∥B∥ (ΛA

𝑖
)𝑛
𝑖=1

; ℎA ←
𝑛∏
𝑖=1

ΛA
𝑖
.pk; check all ΛB

𝑖
.ni;𝜔B ← A∥B∥ (ΛB

𝑖
)𝑚
𝑖=1

; ℎB ←
𝑚∏
𝑖=1

ΛB
𝑖
.pk;

AKE session (reusing the authority data above)

𝑥
$←− Z∗𝑝 ;𝑋 ← 𝑔𝑥 ;

𝑋−−−−−−−−−→ 𝑋−−−−−−−−−→ 𝑋−−−−−−−−−→ 𝑦
$←− Z∗𝑝 ;𝑌 ← 𝑔𝑦 ;

𝐻B ← (ℎB · 𝑋)𝑦 ;
𝑠B ← (𝑌 = 𝑔𝑦 ∧𝐻B = (ℎB · 𝑋)𝑦) ;

niB ← SoK𝜔B {𝑦 : 𝑠B };

Verify 𝜎1

B ;
𝑌,𝜎1

B←−−−−−−−−− Verify 𝜎1

B ;
𝑌,𝜎1

B←−−−−−−−−− Verify 𝜎1

B, niB ;
𝑌,𝜎1

B,𝐻B,niB
←−−−−−−−−−−−− 𝜎1

B ← SSig(B.SK,A∥B∥𝑋 ∥𝑌) ;
𝐻A ← (ℎA · 𝑌)𝑥 ;
𝑠A ← (𝑋 = 𝑔𝑥 ∧𝐻A = (ℎA · 𝑌)𝑥) ;
niA ← SoK𝜔A {𝑥 : 𝑠A };
𝜏A ← 𝑋 ∥𝑌 ∥𝜎1

B

𝜎A ← SSig(A.SK,A∥B∥𝜏A) ;
𝜎A,𝐻A,niA−−−−−−−−−−→ Verify 𝜎A, niA ;

𝜎A−−−−−−−−−→ Verify 𝜎A ;
𝜎A−−−−−−−−−→ Verify 𝜎A ;

Verify 𝜎2

B ;
𝜎2

B←−−−−−−−−− Verify 𝜎2

B, niB ;
𝜎2

B←−−−−−−−−− Let 𝜏B ← 𝑋 ∥𝑌 ∥𝜎1

B ∥𝜎A ;
DH← (𝑋 ∥𝑌) ; DH← (𝑋 ∥𝑌) ; 𝜎2

B ← SSig(B.SK,A∥B∥𝜏B) ;
SIG← 𝜎1

B ∥𝜎A ∥𝜎
2

B ; SIG← 𝜎1

B ∥𝜎A ∥𝜎
2

B ;
𝑡A ← (0∥𝜔A ∥DH∥SIG∥𝐻A ∥niA) ; 𝑡B ← (1∥𝜔B ∥DH∥SIG∥𝐻B ∥niB) ;

Return kA ← 𝑌𝑥
; 𝜎OA ← SSig(OA .SK, 𝑡A) ; 𝜎OB ← SSig(OB .SK, 𝑡B) ; Return kB ← 𝑋𝑦

;

sstA ← (𝑡A ∥𝜎OA) ; sstB ← (𝑡B ∥𝜎OB) ;
Return sstA ; Return sstB ;

Figure 4: The authenticated key-exchange step of our protocol AKE⟨A(A.SK),OA (OA .SK),OB (OB .SK),B(B.SK)⟩(PKA→B).

not (and sometimes should not) know the identities of the relevant

LI authorities in another country.

Verification.We note that verification is unilateral, in the sense

that either we verify the session state on Alice’s side of the con-

versation with respect to the identities of the participants and the

authorities on her side, or we do the same on Bob’s side, with

respect to the authorities and session state on his side.

• Verify(pp, sst,A.PK,B.PK,O.PK,APK) → 𝑏: Parse APK as a

set (Λ𝑖 .PK)𝑛𝑖=1 and parse each Λ𝑖 .PK as (Λ𝑖 .pk,Λ𝑖 .ni), set

𝜔 ← A∥B∥(Λ𝑖)𝑛𝑖=1 and ℎ ←
𝑛∏
𝑖=1

Λ𝑖 .pk. Parse sst as 𝑑 ∥𝜔 ′∥𝑋 ∥

𝑌 ∥𝜎1B∥𝜎A∥𝜎
2

B∥𝐻 ∥ni∥𝜎𝑂 and set 𝑍0 = 𝑋 and 𝑍1 = 𝑌 . if 𝜔 =

𝜔 ′ and:
– For all 𝑖 ∈ J1, 𝑛K, NIPoKver(Λ𝑖 .pk,Λ𝑖 .ni) = 1;

– SoKver(𝜔, (𝑔, 𝑍𝑑 , ℎ · 𝑍1−𝑑 , 𝐻), 𝜋) = 1;

– SVer(B.PK,A∥B∥𝑋 ∥𝑌) = 1;

– SVer(A.PK,A∥B∥𝑋 ∥𝑌 ∥𝜎1B) = 1;

– SVer(B.PK,A∥B∥𝑋 ∥𝑌 ∥𝜎1B∥𝜎A) = 1;

– SVer(O.PK, 𝑑 ∥𝜔 ′∥𝑋 ∥𝑌 ∥𝜎1B∥𝜎A∥𝜎
2

B∥𝐻 ∥ni) = 1;

then the algorithm returns 1, else it returns 0.

Lawful interception. Lawful interception consists of two stages.

First, in an individual effort, each authority computes a trapdoor

to the session key. Then, during opening, the trapdoors must be

combined to retrieve the session key from the ciphertext provided

by the endpoint users (either 𝐻A or 𝐻B, as the case may be).

For Alice’s side, each authority computes as a first element of the

trapdoor the group element𝑋Λ .SK
(where𝑋 is Alice’s key-exchange

element). The second element of the trapdoor is a proof of well-

formedness from the part of the authority, namely demonstrating

that the same private key was used to compute both the authority’s

long-term public key and the authority’s first trapdoor element.

The same is true for Bob, except that the authorities will compute

𝑌Λ .SK
.

The opening procedure begins with a verification of both the

validity of the session state with respect to the expected participants

and authorities, and soundness of the handshake, and a verification

of the well-formedness of all the trapdoors used in input to the

opening algorithm. On Alice’s side, the session key is obtained from

the ciphertext 𝐻A, by dividing it by the product of the trapdoors

obtained by all the authorities agreed upon by Alice and OA. On

Bob’s side, the procedure is identical, using 𝐻B and the authorities

on Bob’s side.

• TDGen(pp,Λ .SK, sst): Parse sst as (𝑑 ∥𝜔 ′∥𝑋 ∥𝑌 ∥𝜎1B∥𝜎A∥𝜎
2

B∥
𝐻 ∥ni∥𝜎𝑂) and set 𝑍0 ← 𝑋 , 𝑍1 ← 𝑌 , Λ .td1 ← 𝑍

Λ .SK
𝑑

,

Λ .td2 ← NIPoK
{
Λ .SK : Λ .PK = 𝑔Λ .SK ∧ Λ .td1 = 𝑍

Λ .SK
𝑑

}
and

Λ .td← (Λ .td1,Λ .td2), and returns Λ .td.
• Open(pp, sst,APK,T): Parse T as (Λ𝑖 .td)𝑛𝑖=1, sst as 𝑑 ∥𝜔

′∥
𝑋 ∥𝑌 ∥𝜎1B∥𝜎A∥𝜎

2

B∥𝐻 ∥ni∥𝜎𝑂 , set 𝑍0 = 𝑋 and 𝑍1 = 𝑌 , parse

APK as (Λ𝑖 .𝑝𝑘)𝑛𝑖=1, parse each Λ𝑖 .PK as (Λ𝑖 .pk,Λ𝑖 .ni), each
Λ𝑖 .td as (Λ𝑖 .td1,Λ𝑖 .td2) and verify that NIPoKver((𝑔,Λ𝑖 .pk,
𝑍𝑑 ,Λ𝑖 .td1),Λ𝑖 .td2) = 1; if any verification fails, the Open
algorithm returns ⊥. Compute and return k← 𝐻∏𝑛

𝑖=1 (Λ𝑖 .td1) .

Once more we draw the reader’s attention to the fact that the

opening procedure only requires the trapdoors of the set of au-

thorities stipulated in the given session state. In other words, if OA
outputs a session state sstA that is then used for the lawful inter-

ception steps, then the opening does not require the contribution

of the authorities on Bob’s side of the conversation.

Conference’17, July 2017, Washington, DC, USA Anon.

Correctness of LI. Let us examine the correctness of the algorithm

on one side of the conversation, say on Alice’s side. The ciphertext

used in the opening algorithm is 𝐻 = 𝐻A = (ℎA · 𝑌)𝑥 = ℎ𝑥A · (𝑌
𝑥).

We substitute in the value of ℎA, which yields 𝐻 =

(
𝑛∏
𝑖=1

ΛA
𝑖
.pk

)𝑥
·

kA =

(
𝑛∏
𝑖=1

(
ΛA
𝑖
.pk

)𝑥)
· kA =

(
𝑛∏
𝑖=1

(
𝑔Λ

A
𝑖
.SK

)𝑥)
· kA. Note that we can

switch the left-hand exponents, as 𝑔Λ
A
𝑖
.SK·𝑥 = 𝑔𝑥 ·Λ

A
𝑖
.SK

, and thus:

𝐻 =

(
𝑛∏
𝑖=1
(𝑔𝑥)ΛA

𝑖
.SK

)
· kA =

(
𝑛∏
𝑖=1

𝑋ΛA
𝑖
.SK

)
· kA.

During Lawful Interception, each authority ΛA
𝑖
generates as its

first trapdoor element ΛA
𝑖
.td1 = 𝑋ΛA

𝑖
.SK

(the second element is

a proof of well-formedness of that trapdoor, with respect to the

authority’s private key). During opening, the key is retrieved as:

ˆkA =
𝐻A∏𝑛

𝑖=1 (Λ𝑖 .td1)
=

𝐻A∏𝑛
𝑖=1 𝑋

ΛA
𝑖
.SK

=

(
𝑛∏
𝑖=1

𝑋ΛA
𝑖
.SK

)
· kA∏𝑛

𝑖=1 𝑋
ΛA
𝑖
.SK

= kA

The flexibility of our approach.We return here to some of the

desirable features of LIKE schemes that we mentioned in Section 1.

We have already discussed one of them: the complete independence

of the LI processes on either side of the communication: Alice and

her operator need know nothing about the lawful-interception

process (including the names or public keys of the authorities)

on Bob’s side of the communication. There is also no cardinality

requirement on the sizes of the two authority subsets: in other

words, Alice’s communication might be subject to less authorities

than Bob’s. We also note that Alice and her operator are never

involved by the authorities on Bob’s side, should Bob’s side of

the communication be subject to LI requirements (nor vice-versa).

These properties are all novel to our scheme, making it much more

useful (and realistic) in practice than previous work.

Our scheme also benefits from the flexibility of Arfaoui et al.’s
protocol. The separation of the party set into disjoint sets (author-

ities, operators, and users) is not as restrictive as it appears. This

separation is more about cryptographic data and ownership of keys.

Thus, if in a given country an operator is, in fact, an authority, then

two sets of keys are generated, and the operator uses its operator

keys while functioning as an operator, and its authority keys for LI

queries. If only some of the authorities need to recover the secret,

then those authorities can create a secure channel and use that

to publish their trapdoors (while the remaining authorities, who

need not recover the secret, can just publish it outside that secure

channel).

5 IMPLEMENTATION RESULTS

We implement a prototype of our protocol and the protocol of

Arfaoui et al. [2] using the Charm-Crypto framework; our code

is available at [13]. Since [2] requires pairings, we need to use

a pairing-friendly curve for the initial comparison – in our case,

MNT159 with 159-bit base field from the PBC library, which ensures

a security level of 80 bits and has fairly-fast pairing computations.

However, our protocol does not, in fact, require pairings; thus, we

can also run our protocol using the NIST/X9.62/SECG curve over
a 192 bit prime field prime192v – for which our protocol gains a

significant performance leap. We note that by using the second

curve, we gain in security, as well as efficiency.

We use Schnorr-like protocols and signatures to instantiate the

zero-knowledge proofs of knowledge, the signatures of knowledge,

and the signature schemes. We run our script on Ubuntu 18.04.4
LTS (64 bits) using an Intel Core i5-8365U CPU @ 1.60GHz×8
processor.

In Figure 5 we summarize our implementation results, comparing

the protocol of Arfaoui et al. [2] and our protocol. We evaluate the

computation cost of the precomputation phase, the key-exchange

protocol for one entity (Alice, Bob or an operator), the active phase

of the key exchange protocol (where the protocol steps are executed

sequentially), the verification of sst, the trapdoor generation, and
the extraction of the key. The first part of the table in Fig. 5 evaluates

the number of exponentiations in the prime order groups and,

optionally, the number of pairing-computations, which are the

most costly operations of the protocols. Note that pairings are, in

general, much less efficient than exponentations.

The second part of the table in Fig. 5 evaluates the execution

time of the two protocols (for 𝑛 = 3 authorities)
5
. We evaluate the

performance of our protocol for the same setting as for Arfaoui

et al. [2] (MNT159), and then showcase its true potential by using

the more appropriate prime192v curve. The lack of pairings pro-

vides an evident advantage in the prime192v setting, but is even
present on MNT159 curves: indeed, on MNT159 the pairing takes in-

put of the type (𝑔, ˜ℎ) from G1 × G2, and computations are much

faster in G1 than in G2. For the protocol of Arfaoui et al. we are
obliged to perform exponentiations in both G1 and G2 on MNT159;
however, for our scheme we can just use G1 and its more efficient

exponentiations throughout the protocol. The difference in perfor-

mance between the two protocols is therefore more significant than

expected from the theoretical analysis.

The pre-computation, verification, and key-extraction steps de-

pend on the number of authorities. In Figure 5, we fixed those

numbers (to 𝑛 for the theoretical analysis and for 3 for the imple-

mentation analysis). In Figure 6, we evaluate the performance of

these algorithms as a function of the number of authorities (ranging

from 2 to 15), highlighting the linear complexity of these algorithms

and the significantly-increased efficiency of our approach.

The graph in Figure 6 clearly shows that theArfaoui et al. remains

the least efficient one of the three (the top curve in each of the

graphs). The gap between the scheme in [2] and our protocol in

the MNT159 setting shows the advantage of not using pairings (the

green curve is much lower than the red curve for the verification

and extraction algorithms respectively). The vertical between the

two curves is much more significant in the case of verification

(for which we require two pairings and several operations in G2
in [2]) than for extraction (one pairing only). In the case of the

5
We note that the protocol of [2] only works for a single set of authorities on both

sides (Alice’s a Bob’s sides, respectively). In our protocol, Alice’s side could be opened

by a different set of authorities than Bob’s side. To make the comparison fair with

respect to [2], we fix the number of authorities for the Arfaoui et al. protocol [2] to
3, and assume for our protocol that either Alice’s or Bob’s side features 3 authorities,

and that this is the side that opens the protocol.

Pairing-free secure-channel establishment in mobile networks with fine-grained lawful interception Conference’17, July 2017, Washington, DC, USA

Protocol PrecomputationKey exchange Verification Trapdoor gen. Extraction

Arfaoui et. al. [2] (2𝑛)𝐸 40𝐸 + 8𝑃 (2𝑛 + 12)𝐸 + 2𝑃 3𝐸 + 1𝑃 (4𝑛)𝐸 + 1𝑃
Our protocol (2𝑛)𝐸 39𝐸 (2𝑛 + 12)𝐸 3𝐸 (4𝑛)𝐸

Arfaoui et al. [2] (MNT159) 2.39ms 115.50ms 35.41ms 4.35ms 9.06ms

Our protocol (MNT159) 2.31ms 15.41ms 6.90ms 1.17ms 4.57ms

Our protocol (prime192v1) 1.53ms 10.85ms 4.76ms 0.78ms 2.99ms

Figure 5: Theoretical and implementation results for our protocol vs. that of Arfaoui et al.. Theoretical results depend on the

number of authorities (𝑛), the number of exponentiations in a prime order group (𝐸), and the number of pairing computations

(𝑃). Implementation results are averaged over 100 executions, for 3 authorities, using the settings MNT159 and prime192v.

precomputation algorithm, neither pairings nor operations in G2
are needed for [2] and therefore the two curves are very close.

The prime192v setting is even more advantageous to our pro-

tocol, since the exponentiations are much faster, and in addition,

we require no pairings. This is depicted in Figure 6, in the bottom

curve (the blue one), which not only starts out being faster, but

shows a much less-steep linear progression as 𝑛 increases.

To conclude, our evaluation shows that our protocol not only

improves the functionality of LIKE protocols to allow them to func-

tion in two distinct countries, but also substantially improves its

effectiveness in both theory and practice.

6 SECURITY ANALYSIS

Our protocol guarantees the following properties, formalized by

Arfaoui et al. for domestic mobile communications [2]:

• Key-Security (KS): The key computed by Alice and Bob is

indistinguishable from random to anyone but Alice and Bob,

as long as at least one of the authorities on Alice’s side, and

one of the authorities on Bob’s side of the communication

disagrees with Lawful Interception.

• Non-Frameability (NF): If a user has not taken part in a

particular protocol session, no one can accuse that user of

having done so.

• Honest Operator (HO): If an operator has allowed a pro-

tocol session to run to completion, it is guaranteed that the

key retrieved by lawful interception by the authorities used

by the operator will yield the key extracted from Alice’s and

Bob’s session state, i.e., the key Alice and Bob themselves

should have computed.

The notions our protocol achieve are slightly different than those

guaranteed by the scheme of Arfaoui et al., since we need to adapt

the definitions to having two sets of authorities. We try to keep

the modifications at a minimum. Looking ahead, we will need to

change the definitions of key-freshness (for the key-security game)

and of the HO extractor (for the honest-operator game). Having

done so, the security experiments themselves can remain the same

as in the original paper. Our new definitions, Def. 6.2 and 6.3, appear

later in this section.

For completeness, we first summarize the security model due to

Arfaoui et al., before we introduce the theorem that quantifies the

security properties of our scheme. Since the fully-formalized model

exists already in [2], we prefer to use a more intuitive description of

it here, only giving full formalizations for the parts that we needed

to expand on or change fundamentally.

6.1 Security model

The execution environment. We consider an environment in

which the adversary will be able to interact with honest parties

via oracles. Each property is formalized in terms of a security game,
played by the adversary against a challenger, which manipulates

the honest parties.

Each party is associated with a tuple (SK, PK), namely its long-

term private and public keys (these keys are generated, depend-

ing on the type of party, by one of the UKeyGen, OKeyGen, or
AKeyGen algorithms). Each party is also associated with a corrup-

tion flag 𝛾 , which is raised if the adversary queries the corruption

oracle.

The users and operators run the authenticated key-exchange

protocol in sessions. At each session, each of the four parties gen-

erates a new instance of itself. We quantify instances collectively,

denoting by 𝜋𝑖P the 𝑖-th instance generated during the experiment,

where P denotes the corresponding party.

Each instance stores a number of attributes, basically storing

important information related to the session in which it took part,

namely:

• sid: a session identifier, including a number of session-specific

values that are hopefully unique to a session. User instances

running the same session should have the same session iden-

tifier.

• PID: the identifiers of all the other users (i.e., , parties in the

set USERS) running the same session as the given instance.

• OID: the identifiers of all the other operators running the

same session as the given instance.

• AID: the identifiers of all the authorities included by that in-
stance in the given session. Note that, unlike for the protocol

of Arfaoui et al., in our scheme an instance of Alice might

have a different authority partner-set than the matching

instance of Bob.

• 𝛼 : a flag that is raised upon a successful termination of the

protocol run.

• k: the session key, which is an attribute specific only to users,

and not to operators.

• sst: the session state: a set of values included in the instance’s
view of the session. This is an attribute specific only to oper-

ator instances.

• 𝜌 : a reveal bit, specific only to users and set to 1 if the ad-

versary queries the Reveal oracle on the instance’s session

key.

Conference’17, July 2017, Washington, DC, USA Anon.

	0

	2

	4

	6

	8

	10

	12

	14

	2 	4 	6 	8 	10 	12 	14 	16

Arfaoui	et.	al.
Our	protocol	using	prime192v1

Our	protocol	using	MNT159

	0

	5

	10

	15

	20

	25

	30

	35

	40

	45

	2 	4 	6 	8 	10 	12 	14 	16

Arfaoui	et.	al.
Our	protocol	using	prime192v1

Our	protocol	using	MNT159

	0

	5

	10

	15

	20

	25

	30

	35

	2 	4 	6 	8 	10 	12 	14 	16

Arfaoui	et.	al.
Our	protocol	using	prime192v1

Our	protocol	using	MNT159

Figure 6: Average execution time (in milliseconds, for 100 executions) of the precomputation (left), verification (middle), and

extraction (right) algorithms respectively, as a function of the number of authorities. For each algorithm, we plot the graph for

Arfaoui et al. [2] in the MNT159 setting (red) and for our protocol using the settings MNT159 (green) and prime192v (blue).

• b: a bit chosen uniformly at random upon the creation of the

instance.

• 𝜏 : the transcript of the session.

For our security games, we will need to establish a correlation

between session states and instances (rather than just between ses-

sion states and parties, as is done in the verification algorithm). We

adopt the same approach as Arfaoui et al. and require the existence

of an auxiliary function IdentifySession(sst, 𝜋), which evaluates

to 1 if the given instance has run a session with state sst and 0

otherwise.

A first modification: matching conversation. We need to rede-

fine the concept of matching instances with respect to [2], because

in our case, they no longer have the same authority partner sets.

Definition 6.1 (Matching instances). For any (𝑖, 𝑗) ∈ N2 and

(A,B) ∈ USERS2 such that 𝐴 ≠ 𝐵, we say that 𝜋𝑖A and 𝜋
𝑗

B have
matching conversation if all the following conditions hold: 𝜋𝑖A .sid ≠

⊥ and 𝜋𝑖A .sid = 𝜋
𝑗

B .sid. If two instances 𝜋𝑖A and 𝜋
𝑗

B have matching

conversation, we say that 𝜋𝑖A matches 𝜋 𝑗

B.

Oracles. In the security games, the adversary will be able to query

some or all of the oracles below (whose formal definition appears

already in [2]).

• Register(P, role, PK) → ⊥ ∪ P.PK: Creates a new party,

adding it to one of the sets USERS,OPS, or AUTH, depend-
ing on the value of role (which can be user, authority,
or authority. Credentials are also created, by using the

appropriate Key Generation algorithm.

• NewSession(P, PID,OID,AID) → 𝜋𝑖P: Creates a new party

or operator instance, with user partner set PID, operator
partner set OID, and authority partner set AID.
• Send(𝜋𝑖P,𝑚)→ 𝑚′: Sends a message𝑚 to instance 𝜋𝑖P and

returns𝑚′ according to protocol.

• Reveal(𝜋𝑖P)→ k: Returns the session key (resp. the session

state) if the input instance is an accepting user (resp. opera-

tor) instance, and sets that instance’s reveal bit to 1.

• Corrupt(P)→ P.SK: Returns a party’s long-term secret key

and sets that party’s corruption bit to 1: P.𝛾 = 1.

• Test(𝜋𝑖P) → k̃: This oracle can only be queried once. If the

input instance belongs to a user, then, depending on the

value of that instance’s test bit, this oracle returns either

the real key (for 𝜋𝑖P .b = 0) or a random key from the same

domain otherwise.

• RevealTD(sst,A,B,O, (Λ𝑖)𝑛𝑖=1, 𝑙) → Λ𝑙 .td: This oracle will
reveal the trapdoor that the 𝑙-th authority in the input set of

authorities would have output for a session sst if, and only

if, the parameters input to this oracle verify for sst (in terms

of the algorithm Verify).

Secondmodification: key-freshness. The notion of key-freshness
is fundamental in typical Bellare-Rogaway models of secure au-

thenticated key-exchange. It captures the limitations of the security

guarantee that can be proved for the protocol, eliminating “trivial

attacks", i.e., simple attacks that the adversary can use to trivially

break security. Ideally, the trivial attacks describe ways in which

the protocol ismeant to function: for instance even in a secure AKE

protocol the two endpoints must know the session key.

The LIKE scenario defined by Arfaoui et al. is meant to function

in a setting where only one set of authorities can exceptionally

open a session key. In our case, that definition expands to two sets

of authorities (the authorities on Alice’s side, and those on Bob’s

side).

Informally, the key-freshness conditions in [2] state that the

session key may only be compromised by: Alice, Bob, and the union

of all the authorities for which the AKE session was run
6
. In other

words, if Alice, Bob, and at least one authority remain honest and

uncorrupted, then the session key is secure.

In our new definition, keys may only be compromised by: Alice,

Bob, the union of all the authorities on Alice’s side or the union

of all the authorities on Bob’s side. More formally, we define key-

freshness as follows.

Definition 6.2 (Key freshness). Let 𝜋 𝑗

P be the 𝑗-th instance of party

P ∈ USERS and let A be a PPT adversary against LIKE. Set P′ ←
𝜋
𝑗

P .PID. The key 𝜋
𝑗

P .k is fresh if all the following conditions hold:

• 𝜋
𝑗

P .𝛼 = 1, P.𝛾 = 0 when 𝜋
𝑗

P .𝛼 became 1, and 𝜋
𝑗

P .𝜌 = 0.

• if 𝜋
𝑗

P matches 𝜋𝑘P′ for 𝑘 ∈ N, then: 𝜋
𝑘
P′ .𝛼 = 1, P′.𝛾 = 0 when

𝜋𝑘P′ .𝛼 became 1, and 𝜋𝑘P′ .𝜌 = 0.

• if no 𝜋𝑘P′ matches 𝜋
𝑗

P, P
′.𝛾 = 0.

6
We generalize a little here: typical AKE models also feature a key-revealing oracle,

which does not necessarily map to a compromise of Alice or Bob, but just to a partial

state compromise for one particular session. Key-freshness in [2] also stipulates of

course that a session is no longer fresh if the key has been revealed.

Pairing-free secure-channel establishment in mobile networks with fine-grained lawful interception Conference’17, July 2017, Washington, DC, USA

• ∃Λ ∈ AUTH and there is noRevealTD(sst,A,B,O, (Λ𝑖)𝑛𝑖=1, 𝑙)
query made by A such that:

– Λ ∈ 𝜋 𝑗

P .AID, Λ .𝛾 = 0 and Λ = Λ𝑙 ;

– IdentifySession(sst, 𝜋 𝑗

P) = 1.

• ∃ Λ′ ∈ AUTH such that for all 𝑘 ∈ N such that 𝜋
𝑗

P matches

𝜋𝑘P′ , therewas noRevealTD(sst,A,B,O, (Λ𝑖)𝑛𝑖=1, 𝑙) querymade

by A such that:

– Λ′ ∈ 𝜋𝑘P′ .AID, Λ
′.𝛾 = 0 and Λ′ = Λ𝑙 ;

– IdentifySession(sst, 𝜋𝑘P′) = 1.

The security of LIKE with roaming. Since we have modified

the definition of key-freshness to account for the presence of a

second set of authorities, we can elegantly reuse the definition of

key-security provided by Arfaoui et al., as well as that for Non-
Frameability (which we briefly recall below). Looking ahead, we

slightly modify the definition of the key-extractor, which is simpli-

fied with respect to that of [2] – and then reuse the definition of

the Honest-Operator property as is.

Key-Security. In the key-security experiment, the adversary plays

the game in Figure 7 (left-hand side). It has access to all the oracles

presented earlier and eventually outputs a tuple made up of an index

𝑖 , a party P, and a guess bit 𝑑 . The adversary wins if 𝑑 is indeed

the test bit associated to instance 𝜋𝑖P (which must be an instance

of P), and if that instance is fresh in the sense of the key-freshness

definition. The advantage of A against ExpKSLIKE,A (𝜆) is defined as:

AdvKSLIKE,A (𝜆) :=
���Pr [ExpKSLIKE,A (𝜆) = 1

]
− 1

2

���
We call the LIKE scheme key-secure if all PPT adversaries have

at most a negligible advantage to win.

Non-Frameability. In the non-frameability game, A has access

to all but the testing oracle, and it eventually outputs a session-

state/party tuple. The adversary wins if party P never took part in

(or never completed) the session that yielded sst. This is captured
by the experiment in Figure 7. We define the advantage of A as

AdvNFLIKE,A (𝜆) = Pr
[
ExpNFLIKE,A (𝜆) = 1

]
.

An LIKE scheme is non-frameable if all PPT adversaries have at

most a negligible advantage to win the NF game.

Honest operator. In the HO game, the adversary wants to make

the lawful-interception process performed on a specific completed

session somehow fail (i.e., retrieve a different key than should be

recovered, or not to retrieve a key at all). The definition depends

on a simulator called the extractor, whose job is to retrieve, from

a session state, the key that Alice and Bob should have computed.

Note that, since in this game Alice and Bob are malicious, they

cannot be compelled to compute – or in fact use – the key that

is yielded by our scheme; however, we can compel them to run

the protocol correctly to completion. This is the main task of the

operators, who have to check all the signatures, as well as the proofs

of well-formedness of 𝐻A and 𝐻B provided by the endpoints.

We present here our modified key-extractor definition, which

takes into account the fact that opening procedures are somewhat

unilateral. In addition, we have strengthened the key-extraction

requirement so that the extractor must be able to recover the session

key based only on transcript equality.

Definition 6.3 (Key extractor). For any LIKE, a key extractor

Extract(·, ·) is a deterministic unbounded algorithm such that, for

any integers 𝑛 and𝑚, users A and B, operators OA and OB, and

vectors of authorities (ΛA
𝑖
)𝑛
𝑖=1

and (ΛB
𝑖
)𝑚
𝑖=1

, any set {pp, A.PK,
A.SK,B.PK,B.SK,OA .PK,OA .SK,OB .PK,OB .SK, k, sstA, sstB,APKA =

(ΛA
𝑖
.PK)𝑛

𝑖=1
, (ΛA

𝑖
.SK)𝑛

𝑖=1
,APKB = (ΛB

𝑖
.PK)𝑚

𝑖=1
, (ΛB

𝑖
.SK)𝑚

𝑖=1
, 𝜏A, 𝜏B, PPK}

generated as follows:

pp← Setup(𝜆); (A.PK,A.SK) ← UKeyGen(pp);
(B.PK,B.SK) ← UKeyGen(pp);
(OA .PK,OA .SK) ← OKeyGen(pp);
(OB .PK,OB .SK) ← OKeyGen(pp);
∀𝑖 ∈ J1, 𝑛K, (ΛA

𝑖
.PK,ΛA

𝑖
.SK) ← AKeyGen(pp);

∀𝑖 ∈ J1,𝑚K, (ΛB
𝑖
.PK,ΛB

𝑖
.SK) ← AKeyGen(pp);

(k, sstA, sstB, k) ← AKE⟨A(A.SK),OA (OA .SK),OB (OB .SK),
B(B.SK)⟩(pp,A.PK,B.PK,APKA,APKB);
𝜏A is the transcript of the execution yielding sstA from OA’s

point of view;

𝜏B is the transcript of the execution yielding sstB from OB’s

point of view;

PPK← {OA .PK,OB .PK,A.PK,B.PK}∪{ΛA
𝑖
.PK}𝑛

𝑖=1
∪{ΛB

𝑖
.PK}𝑚

𝑖=1
;

it holds that for any 𝑃 ∈ {A,B} and any instance 𝜋 such that

𝜋.𝜏 = 𝜏𝑃 , then: Pr[Extract(𝜋, PPK) = k] = 1

Notice that our extractor is unbounded, as it must be in order

to preserve key security (otherwise the extractor would allow the

operator to find the session key).

A scheme is honest-operator secure if there exists an extractor

that makes the adversary’s advantage in the honest-operator game

(right-hand side of Figure 7) negligible as a function of 𝜆. The

advantage is defined as: AdvHOLIKE,A (𝜆) =

Pr
[
(𝑘∗, 𝜋O, PPK) ← ExpHOLIKE,A (𝜆);
𝑘 ← Extract(𝜋O, PPK)

:

𝑘 ≠ ⊥ ∧ 𝑘∗ ≠ ⊥
∧ 𝑘 ≠ 𝑘∗

]
.

6.2 Security statement

The theorem below quantifies the guarantees that our new protocol

provides. We give the most complicated proof (key-security) in the

appendix, but, due to space restrictions, only include sketches for

the other two properties. Our full proofs can be found in our full pa-

per [13]. Henceforth, let sid := 𝑋 ∥𝑌 , and define IdentifySession(sst,
𝜋
𝑗

P) for party P and 𝑗 ∈ N as follows: parsing sst as (𝑏∥A∥B∥
(Λ𝑖)𝑛𝑖=1∥𝑋 ∥𝑌 ∥𝜎

1

B∥𝜎A∥𝜎
2

B∥𝜎𝑂 ∥𝐻 ∥ni), then IdentifySession(sst, 𝜋 𝑗

P)
returns 1 iff 𝑋 ∥𝑌 = 𝜋𝑖P .sid, and if 𝜋

𝑗

P plays the role of Alice then

P = A and 𝜋
𝑗

P .PID = B, else 𝜋 𝑗

P .PID = A and P = B.

Theorem 6.4. Assuming that we instantiate our protocol with an
EUF-CMA-secure signature scheme. Then our scheme:
• is non-frameable. Moreover, for all PPT A, making at most 𝑞r
queries to Register, AdvNFLIKE,A (𝜆) ≤ 𝑞r · AdvEUF-CMA

DS (𝜆) .
• is honest-operator secure if, additionally, the proofs and signa-
tures of knowledge are zero-knowledge and extractable. More-
over, for all PPT adversaries A doing at most 𝑞r queries to the
oracle Register, we have:

AdvHOLIKE,A (𝜆) ≤ 𝑞r· ≤ 𝑞r·
(
𝜖NIPoK (𝜆) + 𝜖SoK (𝜆) + AdvEUF-CMA

DS (𝜆)
)
.

Conference’17, July 2017, Washington, DC, USA Anon.

ExpKSLIKE,A (𝜆): ExpNFLIKE,A (𝜆): ExpHOLIKE,A (𝜆):
pp← Setup(1𝜆); pp← Setup(1𝜆) pp← Setup(1𝜆);

OKS ←


Register(·, ·, ·), Send(·, ·),
NewSession(·, ·, ·),
Reveal(·),RevealTD(·, ·),
Corrupt(·, ·), Test(·)

; ONF ←
{

Register(·, ·, ·), Send(·, ·),Reveal(·),
NewSession(·, ·, ·),RevealTD(·, ·),Corrupt(·, ·)

}
; OHO ←

{
Register(·, ·, ·),NewSession(·, ·, ·), Send(·, ·),
Reveal(·),RevealTD(·, ·),Corrupt(·, ·)

}
;

(𝑖, P, d) ← AOKS (𝜆, pp); (sst, P) ← AONF (𝜆, pp); (𝑗, sst,A,B,O, (Λ𝑖 ,Λ𝑖 .td)𝑛𝑖=1) ← A
OHO (𝜆, pp);

If 𝜋𝑖P.k is fresh and 𝜋𝑖P .b = d, return 1; If ∃ (A,B) ∈ USERS2, 𝑛 ∈ N, O ∈ OPS, (Λ𝑖)𝑛𝑖=1 ∈ AUTH
𝑛
s.td.: If O.𝛾 = 1 then return ⊥;

Else 𝑏 ′
$←− {0, 1}, return 𝑏 ′. Verify(pp, sst,A.PK,B.PK,O.PK, (Λ𝑖 .PK)𝑛𝑖=1) = 1; If Verify(pp, sst,A.PK,B.PK,O.PK, (Λ𝑖 .PK)𝑛𝑖=1) = 0 then return ⊥;

P ∈ {A,B}; If IdentifySession(sst, 𝜋 𝑗

O .sid) = 0 then return ⊥;
P.𝛾 = 0; 𝑘∗ ← Open(pp, sst, (Λ𝑖 .PK)𝑛𝑖=1, (Λ𝑖 .td)𝑛𝑖=1);
∀𝑖, if 𝜋𝑖P ≠ ⊥: IdentifySession(sst, 𝜋𝑖P) = 0 or 𝜋𝑖P .𝛼 = 0, Return (𝑘∗, 𝜋 𝑗

O, {P𝑖 .PK}
𝑞𝑟
𝑖=1
).

Then return 1,

Else return 0.

Figure 7: Games for key-security (KS, left), non-frameability (NF, middle), and honest-operator (HO, right).

• is key-secure if in addition the proofs and signatures of knowl-
edge are extractable and zero-knowledge, and the DDH assump-
tion holds. Moreover, for all PPT adversariesA making at most
𝑞r (resp. 𝑞ns, 𝑞s, and 𝑞t) queries to Register (resp.NewSession,
Send, and RevealTD):

AdvKSLIKE,A (𝜆) ≤
𝑞2s
𝑝
+ 𝑞ns · 𝑞2r ·

(
AdvEUF-CMA

DS (𝜆) + 𝑞ns · 𝑞2r ·(
(2 · 𝑞t + 𝑞s) · 𝜖SoK (𝜆) +𝑞r · 𝜖NIPoK (𝜆) + 3 · AdvDDH (𝜆)

))
.

7 CONCLUSION AND FUTUREWORK

In this paper, we described a provably-secure, pairing-free protocol

that allows Alice and Bob to communicate securely over a mobile

network, without either of their serving networks learning the

contents of their exchanges. In accordance with mobile standards,

we allow limited, fine-grained exceptional access to the data to a

group of authorities.

The main contribution of our work is that it can provide those

strong properties even in the case of roaming, when Alice’s com-

munication is susceptible to being opened by a different set of

authorities than Bob’s. A second virtue of our scheme is that it

is pairing-free, much more efficient and scalable in the number

of authorities compared to prior work, and its security relies on

standard assumptions.

An interesting avenue for future work is investigating how this

protocol could compose with current protocols used in mobile

network (such as AKA).

REFERENCES

[1] Harold Abelson, Ross Anderson, Steven M. Bellovin, Josh Benaloh, Matt Blaze,

Whitfield "Whit" Diffie, John Gilmore, Matthew Green, Susan Landau, Peter G.

Neumann, Ronald L. Rivest, Jeffrey I. Schiller, Bruce Schneier, Michael A. Specter,

and Daniel J. Weitzner. 2015. Keys under Doormats. Commun. ACM 58, 10 (2015),

24–26.

[2] Ghada Arfaoui, Olivier Blazy, Xavier Bultel, Pierre-Alain Fouque, Thibaut Jacques,

Adina Nedelcu, and Cristina Onete. 2021. How to (legally) keep secrets from

mobile operators. In Proceedings of ESORICS (LNCS). Springer.
[3] Abdullah Azfar. 2011. Implementation and Performance of Threshold Cryptogra-

phy for Multiple Escrow Agents in VoIP. In Proceedings of SPIT/IPC. 143–150.
[4] Mihir Bellare and Oded Goldreich. 1992. On Defining Proofs of Knowledge. In

Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 16-20, 1992, Proceedings (Lecture
Notes in Computer Science, Vol. 740), Ernest F. Brickell (Ed.). Springer, 390–420.
https://doi.org/10.1007/3-540-48071-4_28

[5] Mihir Bellare and Shafi Goldwasser. 1997. Verifiable Partial Key Escrow. In CCS
’97. ACM.

[6] Mihir Bellare and Ronald L. Rivest. 1999. Translucent Cryptography - An Alter-

native to Key Escrow, and Its Implementation via Fractional Oblivious Transfer.

J. Cryptology 12, 2 (1999).

[7] Jan Camenisch and Markus Stadler. 1997. Efficient Group Signature Schemes

for Large Groups (Extended Abstract). In Advances in Cryptology - CRYPTO ’97,
17th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 17-21, 1997, Proceedings (Lecture Notes in Computer Science, Vol. 1294),
Burton S. Kaliski Jr. (Ed.). Springer, 410–424. https://doi.org/10.1007/BFb0052252

[8] Melissa Chase and Anna Lysyanskaya. 2006. On Signatures of Knowledge. In

Advances in Cryptology - CRYPTO 2006, 26th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 2006, Proceedings (Lec-
ture Notes in Computer Science, Vol. 4117), Cynthia Dwork (Ed.). Springer, 78–96.

https://doi.org/10.1007/11818175_5

[9] Liqun Chen, Dieter Gollmann, and Chris J. Mitchell. 1996. Key Escrow inMutually

Mistrusting Domains. In Proceedings of Security Protocols. 139–153.
[10] M. Chen. 2015. Escrowable identity-based authenticated key agreement in the

standard model. In Chinese Electronics Journal, Vol. 43. 1954–1962.
[11] Dorothy E. Denning and Dennis K. Branstad. 1996. A Taxonomy for Key Escrow

Encryption Systems. Commun. ACM 39, 3 (1996).

[12] Qiang Fan, Mingjian Zhang, and Yue Zhang. 2012. Key Escrow Scheme with the

Cooperation Mechanism of Multiple Escrow Agents.

[13] Anonymized for submission. 2021. Full version and code for our paper. https:

//github.com/pairingfreelike/pairingfreelike.

[14] Yu Long, Zhenfu Cao, and Kefei Chen. 2005. A dynamic threshold commercial

key escrow scheme based on conic. Appl. Math. Comput. 171, 2 (2005), 972–982.
[15] Yu Long, Kefei Chen, and Shengli Liu. 2006. Adaptive Chosen Ciphertext Secure

Threshold Key Escrow Scheme from Pairing. Informatica, Lith. Acad. Sci. 17, 4
(2006), 519–534.

[16] Keith M. Martin. 1997. Increasing Efficiency of International Key Escrow in

Mutually Mistrusting Domains. In Cryptography and Coding (LNCS, Vol. 1355).
Springer, 221–232.

[17] SilvioMicali. 1992. Fair Public-Key Cryptosystems. InCRYPTO ’92 (LNCS, Vol. 740).
Springer.

[18] Crypto Museum. [n.d.]. Clipper Chip. Available at

https://www.cryptomuseum.com/crypto/usa/clipper.htm.

[19] Liang Ni, Gongliang Chen, and Jianhua Li. 2013. Escrowable identity-based

authenticated key agreement protocol with strong security. Comput. Math. Appl.
65, 9 (2013), 1339–1349.

[20] Adi Shamir. [n.d.]. Partial key escrow: A new approach to software key escrow.

Presented at Key Escrow Conference, 1995.

[21] Adi Shamir. 1984. Identity-Based Cryptosystems and Signature Schemes. In

CRYPTO. 47–53.
[22] Zhen Wang, Zhaofeng Ma, Shoushan Luo, and Hongmin Gao. 2019. Key Escrow

Protocol Based on a Tripartite Authenticated Key Agreement and Threshold

Cryptography. IEEE Access 7 (2019), 149080–149096.
[23] Charles V. Wright and Mayank Varia. 2018. Crypto Crumple Zones: Enabling

Limited Access without Mass Surveillance. In Proceedings of EuroS&P 2018. IEEE.

https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/11818175_5
https://github.com/pairingfreelike/pairingfreelike
https://github.com/pairingfreelike/pairingfreelike

Pairing-free secure-channel establishment in mobile networks with fine-grained lawful interception Conference’17, July 2017, Washington, DC, USA

A SECURITY PROOFS

A.1 Key-security

Proof. Let LIKE denotes our protocol.We show thatAdvKSLIKE,A (𝜆)
is negligible for any PPT adversary A by using the following se-

quence of games:

Game G0: This game is the same as ExpKSLIKE,A (𝜆).
Game G1: This game is similar to G0, but aborts if the Send oracle

returns twice the same element as 𝑋 or 𝑌 . An abort only happens

if two out of the 𝑞s queried instances choose the same randomness

from G (which is of size 𝑝), yielding:

|Pr [A wins G0] − Pr [A wins G1] | ≤ 𝑞2s/𝑝.

Let 𝜋
𝑖∗
P∗

denote a tested instance. Excluding collisions for 𝑋 and

𝑌 implies that 𝜋
𝑖∗
P∗

now has at most one matching instance. Indeed,

suppose two or more instances matching 𝜋
𝑖∗
P∗

exist. We parse 𝜋
𝑖∗
P∗
.sid

as 𝑍0∥𝑍1 where 𝑍𝑖 (for 𝑖 ∈ {0, 1}) was generated by 𝜋
𝑖∗
P∗
.

By Def. 6.1, all instances matching 𝜋
𝑖∗
P∗

must sample the same

𝑍1−𝑖 ∈ G – impossible after G1.

Game G2: Let P𝑖 be the 𝑖-th party instantiated by Register. Game

G2 proceeds as G1 except that it begins by choosing (𝑢, 𝑣,𝑤) $←−
J1, 𝑞nsK × J1, 𝑞rK2. If A returns (𝑖∗, P∗, d∗) such that, given P′∗ ←
𝜋
𝑖∗
P∗
.PID, we have 𝑖∗ ≠ 𝑢 or P∗ ≠ P𝑣 or P′∗ ≠ P𝑤 , then G2 aborts,

returning a random bit (here, the challenger guesses the tested

party instance, the associated party, and its purported partnering

user). The adversary increases its winning advantage by a factor

equalling the probability of guessing correctly:

|Pr [A wins G1] − 1/2| ≤ 𝑞ns · 𝑞2r |Pr [A wins G2] − 1/2|.

Game G3: Let (𝑖∗, P∗, d∗) be the adversary’s test session that G2

guessed. Let P′∗ ← 𝜋
𝑖∗
P∗
.PID. Game G3 works as G2, except that, if

there exists no 𝜋𝑘P′∗
matching 𝜋

𝑖∗
P∗
, the experiment aborts and returns

a random bit. For any adversary A:

|Pr [A wins G2] − Pr [A wins G3] | ≤ AdvEUF-CMA
DS (𝜆).

Assume to the contrary that there exists an adversary A that wins

G2 with probability 𝜖A (𝜆) by returning a guess (𝑖∗, P∗, d∗) such
that, setting P′∗ ← 𝜋

𝑖∗
P∗
.PID, no 𝑘 ∈ N exists such that 𝜋

𝑖∗
P∗

and

𝜋𝑘P′∗
match. Game G2 demands P′∗ ← P𝑤 (guessed by G2); key-

freshness (Def. 6.2) requires P𝑤 to be uncorrupted and ending in an

accepting state. We use A to build a PPT adversary B that breaks

the EUF-CMA security of DS with non-negligible probability. B
receives the verification key

ˆPK, initializes L𝑆 ← ∅, and faithfully

simulates G2 to A, except for A’s following queries:

Oracle Register(P, role, PK): If P = P𝑤 with P.PK = ⊥, then B
sets P.PK← P̂K.
Oracle Send(𝜋𝑖P,𝑚): There are two particular cases: P = P𝑤 and

P = P∗. If P = P𝑤 , then B queries its Sig(·) oracle to answer A’s

queries. Depending on the role of P𝑤 and the protocol step, B
runs one of: 𝜎1B ← Sig(A∥B∥𝑋 ∥𝑌), 𝜎A ← Sig(A∥B∥𝑋 ∥𝑌 ∥𝜎1B) or
𝜎2B ← Sig(A∥B∥𝑋 ∥𝑌 ∥𝜎1B∥𝜎A). Here, if P𝑤 is the initiator, A∥B =

P𝑤 ∥P𝑤 .PID; else A∥B = P𝑤 .PID∥P𝑤 . The message/signature pairs

are stored in L𝑆 . Since sid = 𝑋 ∥𝑌 , the elements 𝑋 and 𝑌 , and the

identities P𝑤 and 𝜋𝑖P𝑤
.PID are parts of the message signed in 𝜎A,

𝜎1B, and 𝜎
2

B.

If P = P∗, 𝑖 = 𝑖∗, and 𝜋𝑖P .PID = P𝑤 , if SVer(P𝑤 .PK, 𝜎2B,A∥B∥
𝑋 ∥𝑌 ∥𝜎1B∥𝜎A) = 1,B aborts, returning (A∥B∥𝑋 ∥𝑌 ∥𝜎1B∥𝜎A, 𝜎

2

𝑌
). Oth-

erwise, if SVer(P𝑤 .PK, 𝜎A,A∥B∥𝑋 ∥𝑌 ∥𝜎1B) = 1, B aborts, returning

(A∥B∥𝑋 ∥𝑌 ∥𝜎1B, 𝜎A).
Oracle Corrupt(P): If P = P𝑤 , B aborts (due to G2).

Bwins if it sends its challenger amessage/signature pair (𝑀,𝜎) ∉
L𝑆 such that SVer(ˆPK, 𝜎, 𝑀) = 1 with

ˆPK = P𝑤 .PK. We first

argue that A must query Send on input P = P∗, 𝑖 = 𝑖∗, and
𝜋𝑖P .PID = P𝑤 , on message 𝑀B = A∥B∥𝑋 ∥𝑌 ∥𝜎1B∥𝜎A such that

SVer(P𝑤 .PK, 𝜎2B, 𝑀B) = 1, or on message𝑀A = A∥B∥𝑋 ∥𝑌 ∥𝜎1B such

that SVer(P𝑤 .PK, 𝜎A, 𝑀B) = 1. Indeed, if A does not, the (honest)

target instance 𝜋
𝑖∗
P∗

rejects.

Now we can assume that A has queried Send either with 𝜎A or

with𝜎B as above.We have two cases: the submittedmessage/signature

pair is in L𝑆 , or it is not. If the latter happens, clearly B wins.

Assume that the former happens, i.e., the signature 𝜎2B or 𝜎A are

in L𝑆 (generated by B’s oracle). We recall that by assumption

A’s challenge instance has no matching instance, i.e., there exists
no 𝜋

𝑗

P𝑤
such that 𝜋

𝑗

P𝑤
.sid ≠ ⊥ or 𝜋

𝑗

P𝑤
.sid = 𝜋

𝑖∗
P∗
.sid. However, if

𝜋
𝑗

P𝑤
.sid ≠ 𝜋

𝑖∗
P∗
.sid, then then A must have somehow completed

the target session (key-freshness) and used the forged signature

as input to at least one Send message (for Alice’s signature or for

Bob’s second sig, depending on the role of P∗). This message was

not created/output by B, so it can’t be in the list, so B also wins.

Thus, AdvEUF-CMA
DS,B (𝜆) = 𝜖A (𝜆), concluding the proof.

After G2, G3, either a unique instance 𝜋
𝑟
P𝑤

exists, matching 𝜋𝑢P𝑣
=

𝜋
𝑖∗
P∗

or the experiment returns a random bit.

Game G4: Game G4 runs as G3 except that it begins by picking

𝑟
$←− J1, 𝑞nsK (a guess for the matching instance). If A returns

(𝑖∗, P∗, d∗) such that 𝜋𝑖∗P∗ and 𝜋
𝑟
P𝑤

do not match, then the experiment

returns a random bit. The advantage ofA on G4 increases w.r.t. that

in G3 by a factor equalling the correct guessing probability :

|Pr [A wins G3] − 1/2| ≤ 𝑞ns |Pr [A wins G4] − 1/2|.

Game G5: Game G5 proceeds as G4, except that it begins by picking

(𝑙1, 𝑙2)
$←− J1, 𝑞rK2. If the 𝑙1-th or the 𝑙2-th party queried to the

oracle Register is not authority, or if it is an authority (we will

denote it Λ∗
𝑙1
or Λ∗

𝑙2
) who is corrupted, or if RevealTD is called on

(sst,A,B, (Λ𝑖)𝑛𝑖=1, 𝑙) such that Λ𝑙 = Λ∗
𝑙1
and IdentifySession(sst,

𝜋𝑢P𝑣
.sid) = 1, or if Λ𝑙 = Λ∗

𝑙2
and IdentifySession(sst, 𝜋𝑟P𝑤 .sid) = 1,

then the experiment aborts by returning a random bit. Note that 𝜋𝑢P𝑣
is the tested instance and 𝜋𝑟P𝑤

is the unique instance that matches

𝜋𝑢P𝑣
so, by key-freshness (Def. 6.2), if no index 𝑙1 and 𝑙2 exists such

that Λ∗
𝑙1
and Λ∗

𝑙2
are uncorrupted, and RevealTD has never been

called on the query (sst,A,B, (Λ𝑖)𝑛𝑖=1, 𝑙) such that Λ𝑙 = Λ∗
𝑙1
and

IdentifySession(sst, 𝜋𝑢P𝑣 .sid) = 1, and RevealTD has never been

called on the query (sst,A,B, (Λ𝑖)𝑛𝑖=1, 𝑙) such that Λ𝑙 = Λ∗
𝑙2
and

IdentifySession(sst, 𝜋𝑟P𝑤 .sid) = 1, then the experiment returns a

random bit. Thus, the advantage of A in G5 is superior to that in

Conference’17, July 2017, Washington, DC, USA Anon.

G4 by a factor equalling the guessing probability:

|Pr [A wins G4] − 1/2| ≤ 𝑞r
2 |Pr [A wins G5] − 1/2|.

Game G6: Let Ext denote the knowledge extractor of the signature
of knowledge. This game is the same as G5 except that it begins by

initializing L[] ← ∅ and:
• each time the Send oracle generates a SoK ni of an element

𝑑
$←− Z∗𝑝 (the exponent) for elements 𝑔1, 𝐷1, 𝑔2 and 𝐷2 such

that 𝐷1 ← 𝑔𝑑
1
and 𝐷2 ← 𝑔𝑑

2
(𝐷1, 𝐷2 have equal exponents)

for the message 𝜔 , it sets L[(𝑔1, 𝐷1, 𝑔2, 𝐷2, 𝜔, ni)] ← 𝑑 ;

• each time the oracles Send or RevealTD verify a valid sig-

nature of knowledge SoKver(𝜔, (𝑔1, 𝐷1, 𝑔2, 𝐷), ni) = 1 in a

query made byA with L[(𝑔1, 𝐷1, 𝑔2, 𝐷2, 𝜔, ni)] = ⊥, it runs
the key extractor Ext(𝜆) on A to extract the witness 𝑑 that

matches the proof ni. If 𝑔𝑑
1

≠ 𝐷1 or 𝑔𝑑
2

≠ 𝐷2 then the

experiment aborts by returning a random bit, else it sets

L[(𝑔1, 𝐷1, 𝑔2, 𝐷2, 𝜔, ni)] ← 𝑑 .

The difference between G5 and G6 is the possibility of the extractor

failing when it is called. Since RevealTD requires 2 calls (for the

verification of sst) and Send, one at each query,

|Pr [A wins G5] − Pr [A wins G6] | ≤ (2 · 𝑞t + 𝑞s) · 𝜖SoK (𝜆) .

From this step, for any non-simulated SoK ni (regardless of who gen-
erated it between the challenger and the adversary) on a statement

(𝑔1, 𝐷1, 𝑔2, 𝐷2) and a message𝜔 , the listL stores the corresponding

secret 𝑑 at the index (𝑔1, 𝐷1, 𝑔2, 𝐷2, 𝜔, ni).
Game G7: Let Ext denote the extractor of the ZK proof of knowl-

edge NIPoK
{
𝑑 : 𝐷 = 𝑔𝑑

}
. Game G7 runs as G6, except it begins by

initializing an empty list L′[] ← ∅ and:
• Honest authority: if Register generates (Λ .PK,Λ .SK) for an
authority Λ , it sets L′[Λ .PK] ← Λ .SK;
• Malicious authority: ifRegister receives a query (Λ, role, PK)
with role = authority and PK ≠ ⊥, it sets PK ← Λ.PK
and parses PK as (Λ .pk,Λ .ni).
IfNIPoKver((𝑔,Λ .pk),Λ .ni) = 1, G7 runs the extractor Ext(𝜆)
onA to get the witness Λ .SK for Λ .ni. If 𝑔Λ .SK ≠ Λ .pk then

the experiment aborts by returning a random bit, else it sets

L′[Λ .PK] ← Λ .SK.
Once more, the difference between the games is the possibility

that Ext fails in at least one of the calls to the registration oracle,

yielding:

|Pr [A wins G6] − Pr [A wins G7] | ≤ 𝑞r · 𝜖NIPoK (𝜆).

From this step, for any authority public key Λ .PK coupled with a

non-simulated PoK ni (regardless of who generated it between the

challenger and the adversary), the list L′ stores the corresponding
secret key Λ .SK at the index Λ .PK.
Game G8: This game is the same as G7 except that during the session

between 𝜋𝑢P𝑣
and 𝜋𝑟P𝑤

, the group element 𝐻P𝑣 is chosen at random

according to the uniform distribution on G, and the proof niP𝑣 is
simulated. We claim that:���Pr [A wins G7] − Pr [A wins G8]

��� ≤ AdvDDHA (𝜆)

We prove this claim by reduction. We build a distinguisher B for a

DDH instance (𝑈∗,𝑉∗,𝑊∗).

In what follows, SimNIPoK denotes the simulator of the proofs of

knowledge and SimSoK, the simulator of the signature of knowledge.

For the sake of simplicity, and since it is often clear from the context,

we use the same notation to refer to the simulators of the two

different NIPoK systems (DLog and exponent equality) that we use

in our protocol.

It sets pp ← (𝜆,G, 𝑝, 𝑔) and runs A(pp). It simulates G7 to A
as in the real game except for:

• Register(P, role, PK) → P.PK: On the 𝑙 th
1

party, if role ≠

authorities or PK ≠ ⊥, B aborts and returns a random bit,

else it setsΛ∗
𝑙1
← P;Λ∗

𝑙1
.pk← 𝑈∗;Λ∗𝑙1 .ni← SimNIPoK (𝑔,𝑈∗);

Λ∗
𝑙1
.PK← (Λ∗

𝑙1
.pk,Λ∗

𝑙1
.ni) and returns Λ∗

𝑙1
.PK.

• Send(𝜋𝑖P,𝑚): If P = P𝑤 and 𝑖 = 𝑟 , then if P plays the role of

Alice, B sets 𝑥∗ ← 𝑥 and 𝑋∗ ← 𝑋 , else B sets 𝑦∗ ← 𝑦 and

𝑌∗ ← 𝑌 (where (𝑥,𝑋) or (𝑦,𝑌) are generated as in the real

protocol). If P = P𝑣 and 𝑖 = 𝑢, then:

– if P plays the role of Alice, B proceeds as in G7 except that

at the first step it does not generate 𝑥 and sets 𝑋 ← 𝑉∗
and 𝑋∗ ← 𝑋 , and at the second step, it parses 𝜋𝑢P𝑣

.AID as

(ΛA
𝑗
)𝑛
𝑗=1

, it sets SetAu←
{
ΛA
𝑗

}𝑛
𝑗=1
\{Λ∗

𝑙1
} and sets:

𝐻A ←
∏

Λ ∈SetAu
(
𝑋
L′ [Λ .PK]
∗

)
·𝑊∗ · 𝑋 𝑦∗

∗ .

It then runs niA ← SimSoK (𝜔, (𝑔,𝑋∗, ℎA, 𝐻A)), where 𝜔 =

(P𝑣 ∥P𝑤 ∥𝜋𝑢P𝑣 .AID). Finally, it sets ℎ∗ ← ℎA and 𝐻∗ ← 𝐻A
(where ℎA is generated as in the real protocol).

– if P plays the role of Bob, then B proceeds as in G7 except

that it does not generate 𝑦 and sets and 𝑌 ← 𝑉∗ and 𝑌∗ ←
𝑌 , then it parses 𝜋𝑢P𝑣

.AID as (ΛB
𝑗
)𝑚
𝑗=1

, it sets SetAu ←{
ΛB
𝑗

}𝑚
𝑗=1
\{Λ∗

𝑙1
} and sets:

𝐻B ←
∏

Λ ∈SetAu
(
𝑌
L′ [Λ .PK]
∗

)
·𝑊∗ · 𝑌𝑥∗

∗ .

It then runs niB ← SimSoK (𝜔, (𝑔,𝑌∗, ℎB, 𝐻B)), where 𝜔 =

(P𝑤 ∥P𝑣 ∥𝜋𝑢P𝑣 .AID). Finally, it sets ℎ∗ ← ℎB and 𝐻∗ ← 𝐻B
(where ℎB is generated as in the real protocol).

• RevealTD(sst,A,B, (Λ𝑖)𝑛𝑖=1, 𝑙): B parses sst as (𝑏∥𝜔 ′∥𝑋 ∥𝑌 ∥
𝜎1B∥𝜎A∥𝜎

2

B∥𝜎𝑂 ∥𝐻 ∥ni) and sets 𝜔 ← (𝐴∥𝐵∥(Λ𝑖)𝑛𝑖=1), sets
(𝑍0, 𝑍1) ← (𝑋,𝑌), (𝑍 ∗

0
, 𝑍 ∗

1
) ← (𝑋∗, 𝑌∗), andℎ ←

∏𝑛
𝑖=1 Λ𝑖 .pk.

– If IdentifySession(sst, 𝜋𝑢P𝑣 .sid) = 1 and Λ𝑙 = Λ∗
𝑙1
, then B

aborts and returns a random bit, like in the key-freshness

definition.

– If IdentifySession(sst, 𝜋𝑢P𝑣 .sid) = 1 and Λ𝑙 ≠ Λ∗
𝑙1
, then B

knows the secret key of Λ𝑙 . It acts as in G7 except that

it computes Λ𝑙 .td1 ← 𝑌 L[Λ𝑙 .PK]
, Λ𝑙 .td2 ← SimNIPoK (𝑔,

Λ𝑙 .pk, 𝑍𝑏 ,Λ𝑙 .td1) and Λ𝑙 .td← (Λ𝑙 .td1,Λ𝑙 .td2).
– If IdentifySession(sst, 𝜋𝑢P𝑣 .sid) ≠ 1 and Λ𝑙 = Λ∗

𝑙1
, then

IdentifySession(sst, 𝜋𝑢P𝑣 .sid) ≠ 1, which implies that𝑋 ∥𝑌 ∥
A∥B ≠ 𝑋∗∥𝑌∗∥P𝑣 ∥P𝑤 (or 𝑋∗∥𝑌∗∥P𝑤 ∥P𝑣 depending on

who plays the roles of Alice and Bob). B acts as in G7

except that:

∗ if A∥B∥(Λ𝑖)𝑛𝑖=1 ≠ P𝑣 ∥P𝑤 ∥𝜋𝑢P𝑣 .AID (or P𝑤 ∥P𝑣 ∥𝜋𝑢P𝑣 .AID,
if P𝑣 plays the role of Bob), then the algorithm B com-

putes Λ∗
𝑙1
.td1 ← (Λ∗

𝑙1
.pk)L[(𝑔,𝑍𝑏 ,ℎ,𝐻,𝜔,ni)]

; Λ .td2 ←
SimNIPoK (𝑔,Λ∗𝑙1 .pk, 𝑍𝑏 ,Λ

∗
𝑙1
.td1) and Λ∗

𝑙1
.td← (Λ∗

𝑙1
.td1,

Λ∗
𝑙1
.td2). In this case, L[(𝑔, 𝑍𝑏 , ℎ, 𝐻,𝜔, ni)] (recall this

Pairing-free secure-channel establishment in mobile networks with fine-grained lawful interception Conference’17, July 2017, Washington, DC, USA

is the list in Game G6) is always defined because 𝜔 ≠

P𝑣 ∥P𝑤 ∥𝜋𝑢P𝑣 .AID (or P𝑤 ∥P𝑣 ∥𝜋𝑢P𝑣 .AID if P𝑣 plays the role
of Bob).

∗ if A∥B∥(Λ𝑖)𝑛𝑖=1 = P𝑣 ∥P𝑤 ∥𝜋𝑢P𝑣 .AID (or P𝑤 ∥P𝑣 ∥𝜋𝑢P𝑣 .AID,
if P𝑣 plays the role of Bob) and 𝑍

1−𝑏 = 𝑍 ∗
1−𝑏 , then

𝑍𝑏 ≠ 𝑍 ∗
𝑏
, and the algorithm B computes Λ∗

𝑙1
.td1 ←

(Λ∗
𝑙1
.pk)L[(𝑔,𝑍𝑏 ,ℎ,𝐻,𝜔,ni)]

;Λ .td2 ← SimNIPoK (𝑔,Λ∗𝑙1 .pk,
𝑍𝑏 ,Λ

∗
𝑙1
.td1) andΛ∗𝑙1 .td← (Λ

∗
𝑙1
.td1,Λ∗𝑙1 .td2). In this case,

since 𝑍𝑏 ≠ 𝑍 ∗
𝑏
, then L[(𝑔, 𝑍𝑏 , ℎ, 𝐻,𝜔, ni)] is always de-

fined.

∗ else ifA∥B∥(Λ𝑖)𝑛𝑖=1 = P𝑣 ∥P𝑤 ∥𝜋𝑢P𝑣 .AID (or P𝑤 ∥P𝑣 ∥𝜋𝑢P𝑣 .AID,
if P𝑣 plays the role of Bob) and 𝑍𝑏 = 𝑍 ∗

𝑏
, then 𝑍

1−𝑏 ≠

𝑍 ∗
1−𝑏 , which implies that:

ℎ =

(
𝑛∏
𝑖=1

Λ𝑖 .pk
)
· 𝑍

1−𝑏 ≠

(
𝑛∏
𝑖=1

Λ𝑖 .pk
)
· 𝑍 ∗

1−𝑏 = ℎ∗,

so ℎ ≠ ℎ∗. B runs Λ∗
𝑙1
.td1 ← (Λ∗𝑙1 .pk)

L[(𝑔,𝑍𝑏 ,ℎ,𝐻,𝜔,ni)]
;

Λ∗
𝑙1
.td2 ← SimNIPoK (𝑔,Λ∗𝑙1 .pk, 𝑍𝑏 ,Λ

∗
𝑙1
.td1) andΛ∗𝑙1 .td←

(Λ∗
𝑙1
.td1,Λ∗𝑙1 .td2). In this case, since ℎ ≠ ℎ∗, then L[(𝑔,

𝑍𝑏 , ℎ, 𝐻,𝜔, ni)] is always defined.
At the end of the game, A returns a bit 𝑏∗, then if 𝑏∗ = 𝜋𝑢P𝑣

.𝑏, then

B returns 1, else it returns 0.

Let (𝑢∗, 𝑣∗) be an element of (Z∗𝑝)2 such that 𝑈∗ = 𝑔𝑢∗ and

𝑉∗ = 𝑔𝑣∗ . We set Λ∗
𝑙1
.SK← 𝑢∗.

If P𝑣 plays the role of Alice in 𝜋𝑢P𝑣
, then we set 𝑥∗ ← 𝑣∗. With

these notations, we have 𝑋∗ = 𝑔𝑥∗ and Λ∗
𝑙1
.pk = 𝑔

Λ∗
𝑙
1

.SK
. If𝑊∗ =

𝑔𝑢∗𝑣∗ , then𝑊∗ = (Λ∗𝑙1 .pk)
𝑥∗

and:

𝐻∗=
∏

Λ ∈SetAu
(
𝑋
L′ [Λ .pk]
∗

)
·𝑊∗ · 𝑋 𝑦∗

∗

=
∏

Λ ∈SetAu
(
𝑔L
′ [Λ .pk] ·𝑥∗

)
· (Λ∗

𝑙1
.pk)𝑥∗ · 𝑔𝑥∗ ·𝑦∗

=

(∏𝑛
𝑖=1

(
ΛA
𝑖
.pk

)
· 𝑌∗

)𝑥∗
= (ℎ∗ · 𝑌∗)𝑥∗

In this case, G7 is perfectly simulated for A, On the other hand, if

𝑊∗ is a random value, then G8 is perfectly simulated for A. If P𝑣
plays the role of Bob in 𝜋𝑢P𝑣

, we can show in a symmetric way that

if𝑊∗ = 𝑔𝑢∗𝑣∗ then G7 is perfectly simulated for A, otherwise G8 is

perfectly simulated for A. We deduce that:

• Pr [A wins G7] = Pr

[
(𝑢∗, 𝑣∗)

$←− (Z∗𝑝)2;
𝑏 ← B(𝑔𝑢∗ , 𝑔𝑣∗ , 𝑔𝑢∗ ·𝑣∗)

: 𝑏 = 1

]
and

• Pr [A wins G8] = Pr

[
(𝑢∗, 𝑣∗,𝑤∗)

$←− (Z∗𝑝)3;
𝑏 ← B(𝑔𝑢∗ , 𝑔𝑣∗ , 𝑔𝑤∗);

: 𝑏 = 1

]
,

which concludes the proof of the claim.

Game G9: This game is the same as G8 except that during the session

between 𝜋𝑢P𝑣
and 𝜋𝑟P𝑤

, the group element 𝐻P𝑤 is chosen at random

in the uniform distribution on G, and the proof niP𝑤 is simulated.

We claim that:���Pr [A wins G8] − Pr [A wins G9]
��� ≤ AdvDDHA (𝜆)

This claim can be proven in a similar way as for G8.

Game G10: This game is the same as G9 except that the oracle Test

always returns a random value. We claim that:���Pr [A wins G9] − Pr [A wins G10]
��� ≤ AdvDDHA (𝜆)

Weprove this claim by reduction.We build a distinguisherB against

a DDH challenge (𝑋∗, 𝑌∗, 𝑍∗).
It sets pp ← (𝜆,G, 𝑝, 𝑔) and runs A(pp). It simulates G8 to A

as in the real game except for the following special cases:

• Send(𝜋𝑖P, 𝑚): If P = P𝑣 and 𝑖 = 𝑢, or if P = P𝑤 and 𝑖 = 𝑟 ,

then:

– if P plays the role of Alice, thenB proceeds as in G7 except

that it sets 𝑋 ← 𝑋∗.
– if P plays the role of Bob, then B proceeds as in G7 except

that it sets 𝑌 ← 𝑌∗.
At the end of the protocol, 𝜋𝑖P .k is not instantiated.

• Test(𝜋𝑖P): If P = P𝑣 and 𝑖 = 𝑢, then it returns 𝑍∗
At the end of the game, A returns a bit 𝑏∗, then if 𝑏∗ = 𝜋𝑢P𝑣

.𝑏, then

B returns 1, else it returns 0. If 𝑍∗ = 𝑋
𝑦∗
∗ , then G8 is perfectly

simulated for A. On the other hand, if 𝑍∗ is a random value, then

G9 is perfectly simulated for A. We deduce that:

• Pr [A wins G8] = Pr

[
(𝑥∗, 𝑦∗)

$←− (Z∗𝑝)2;
𝑏 ← B(𝑔𝑥∗ , 𝑔𝑦∗ , 𝑔𝑥∗ ·𝑦∗)

: 𝑏 = 1

]
and

• Pr [A wins G9] = Pr

[
(𝑥∗, 𝑦∗, 𝑧∗)

$←− (Z∗𝑝)3;
𝑏 ← B(𝑔𝑥∗ , 𝑔𝑦∗ , 𝑔𝑧∗);

: 𝑏 = 1

]
,

which concludes the proof of the claim. Finally, since G10 do not

depend on 𝜋𝑢P𝑣
.𝑏, we have that Pr [A wins G9] = 1

2
, cncluding the

proof of the theorem. □

A.2 Proof sketches: NF and HO

Due to space restrictions, we only provide sketch proofs for the

non-frameability and honest-operator security statements.

Non-frameability. In the NF experiment, the adversary’s goal is to

make the verification algorithm believe that a given user, say Alice,

has taken part in a session, although this is false. In our protocol,

both Alice and Bob include at least one signature in the session

state, and this signature is checked by the verification algorithm.

Thus, except through forgeries, the adversary cannot win.

Honest operator. For the HO proof, we first have to provide a

(non-polynomial) extractor for the key. This extractor recovers

the key-shares 𝑋 and 𝑌 and then finds, by exhaustive search, the

discrete logarithm 𝑦 of 𝑌 , using it to compute 𝑋 𝑦
. We then have

to show that no adversary can cause authorities to recover, from

a given sst that verifies and represents a completed session, a key

different than that recovered by the extractor. The proof first uses

the unforgeability of the operator’s signature, essentially making

sure that the sst was validated by an operator. Then, the security

of the NIPoKs and SoKs ensure that the two endpoints, Alice and

Bob, have in fact embedded the same key-shares (and the correct

authority keys) in their auxiliary strings 𝐻A and 𝐻B. Once this is

true, the correctness of LI guarantees the final result.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Assumptions and building blocks

	3 LIKE protocols
	4 Our protocol
	5 Implementation results
	6 Security Analysis
	6.1 Security model
	6.2 Security statement

	7 Conclusion and future work
	References
	A Security Proofs
	A.1 Key-security
	A.2 Proof sketches: NF and HO

